Solutions to workshop 03: Rate law and stoichiometry

Lecture notes for chemical reaction engineering

Author
Published

March 10, 2024

Modified

May 10, 2024

Try following problems from Fogler 5e().

P3-5, P3-10, P3-11, P3-12, P 4-6, P 4-8, P 4-11

We will go through some of these problems in the workshop.

P 3.12

Write the rate law for the following reactions assuming each reaction follows an elementary rate law. Give the units of kAk_A for each, keeping in mind some are homogeneous and some reactants are heterogeneous.

  1. CX2HX6CX2HX4 HX2\ce{C2H6 -> C2H4 H2}

  2. CX2HX4+12OX2CX2HX4O\ce{C2H4 + 1/2 O2 -> C2H4O}

  3. (CHX3)X3COOC(CHX3)X3CX2HX6+2CHX3COCHX3\ce{(CH3)3COOC(CH3)3 <=> C2H6 + 2CH3COCH3}

  4. nCX4HX10iCX4HX10\ce{nC4H10 <=> iC4H10}

  5. CHX3COOCX2HX5+CX4HX9OHCHX3COOCX4HX9+CX2HX5OH\ce{ CH3COOC2H5 + C4H9OH <=> CH3COOC4H9 + C2H5OH}

  6. 2CHX3NHX2cat(CHX3)X2NH+NHX3\ce{2CH3NH2 <=>[][{cat}] (CH3)2NH + NH3}

  7. (CHX3CO)X2O+HX2O2CHX3COOH\ce{ (CH3CO)2O + H2O <=> 2CH3COOH }

  1. rA=kCA-r_A = k C_A

  2. rA=kCACB1/2-r_A = k C_A C_B^{1/2}

  3. rA=k(CACBCCK)-r_A = k \left( C_A -\frac{C_B C_C}{K} \right)

  4. rA=k(CACBK)-r_A = k \left( C_A -\frac{C_B}{K} \right)

  5. rA=k(CACBCCCDK)-r_A = k \left( C_A C_B -\frac{C_C C_D}{K} \right)

  6. rA=k(PA2PBPCK)-r'_A = k \left( P_A^2 -\frac{P_B P_C}{K} \right)

  7. rA=k(CACBCC2K)-r_A = k \left( C_A C_B -\frac{C_C^2}{K} \right)

P3-10

The initial reaction rate for the elementary reaction 2A+B4C\ce{2A + B -> 4C} was measured as a function of temperature when the concentration of A was 2 M and that of B was 1.5 M.

rA(mol/dm3s)–r_A (mol/dm^3 s) T(K)T(K)
0.002 300
0.046 320
0.72 340
8.33 360
  1. What is the activation energy?

  2. What is the frequency factor?

  3. What is the rate constant as a function of temperature using and T0T_0 = 27 °C as the base case?

    k(T)=k(T0)exp[ER(1T01T)](1) k(T) = k(T_0) exp \left[ \frac{E}{R} \left( \frac{1}{T_0} - \frac{1}{T} \right)\right] \tag{1}

2A+B4C\ce{2A + B -> 4C}. Elementary reaction. Initial rates given.

For elementary reaction

rA=kCA2CB-r_A = k C_A^2 C_B

k=rACA2CBk = \frac{-r_A}{C_A^2 C_B}

At the start of reaction:

k=rA0CA02CB0k = \frac{-r_{A0}}{C_{A0}^2 C_{B0}}

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import linregress

# Data 
r_A = np.array([0.002, 0.046, 0.72, 8.33])
T = np.array([300, 320, 340, 360])

R = 8.314 # J/mol K
C_A0 = 2.0
C_B0 = 1.5

k = r_A/(C_A0**2 * C_B0)

ln_k = np.log(k)
inv_T = 1 / T

slope, intercept, r_value, p_value, std_err = linregress(inv_T, ln_k)
line = slope * inv_T + intercept

activation_energy = -slope*R/1000 # (kJ/mol)
A0 = np.exp(intercept)

# Plot 
plt.scatter(inv_T, ln_k, color='blue', label='Data points')
plt.plot(inv_T, line, color='red', label='Fit line')

# Labels and title
plt.xlabel('1/T (1/K)')
plt.ylabel('ln(k)')
plt.title('Linear Fit of ln(k) vs 1/T')
plt.legend()

slope_text = f'Slope: {slope:.2f}'
intercept_text = f'Intercept: {intercept:.2f}'
e_text = f'Activation Energy: {activation_energy:.2f} kJ/mol'
a0_text = f'Frequency factor: {A0:.2e} $dm^6/mol^2 s$'
plt.annotate(f'{slope_text}\n{intercept_text}\n{e_text}\n{a0_text}', xy=(0.05, 0.25), xycoords='axes fraction', verticalalignment='top')

# Show plot
plt.show()

k=1.73×1018exp[15000T] k = 1.73 \times 10^{18} \exp \left[ \frac{ -15000 } {T} \right]

P 4-8

The gas-phase reaction

12NX2+32HX2NHX3 \ce{1/2 N2 + 3/2 H2 -> NH3}

is to be carried out isothermally first in a flow reactor. The molar feed is 50% HX2\ce{H2} and 50% NX2\ce{N2} , at a pressure of 16.4 atm and at a temperature of 227 C227 \ ^{\circ}C?.

  1. Construct a complete stoichiometric table.

  2. Express the concentrations in mol/dm3mol/dm^3 of each for the reacting species as a function of conversion. Evaluate CA0C_{A0}, δ\delta and ϵ\epsilon, and then calculate the concentrations of ammonia and hydrogen when the conversion of HX2\ce{H2} is 60%.

  3. Suppose by chance the reaction is elementary with kN2=40 dm3/mol/sk_{N_2} = 40 \ dm^3 /mol/s. Write the rate of reaction solely as a function of conversion for

    1. a flow reactor, and for

    2. a constant-volume batch reactor.

Gas phase reaction

12NX2+32HX2NHX3 \ce{1/2 N2 + 3/2 H2 -> NH3}

yA=0.5y_A = 0.5

yB=0.5y_B = 0.5

P=16.4atmP = 16.4 atm

T=227C=500KT = 227 ^\circ C = 500 K

  1. stoichiometric table

Basis of reaction: HX2\ce{H2}

HX2+13NX223NHX3;A+13B23C \ce{H2 + 1/3 N2 -> 2/3 NH3}; \qquad \ce{A + 1/3 B -> 2/3 C}

Species Entering Change Exiting
A FA0F_{A0} FA0X-F_{A0}X FA=FA0(1X)F_A = F_{A0}(1 - X)
B FB0=ΘBFA0F_{B0} = \Theta_B F_{A0} FA0X/3-F_{A0}X/3 FA=FA0(ΘBX/3)F_A = F_{A0}(\Theta_B - X/3)
C 0 +(2/3)FA0X+ (2/3) F_{A0}X FC=(2/3)FA0XF_C = (2/3) F_{A0} X

_B = 1

  1. Conc. in mol/dm3mol/dm^3 as f(X)f(X)

δ=c/ab/a1=2/31/31=2/3 \delta = c/a - b/a -1 = 2/3 - 1/3 -1 = -2/3

ϵ=yA0δ=0.5δ=1/3 \epsilon = y_{A0} \delta = 0.5 \delta = -1/3

CA0=0.2 C_{A0} = 0.2

CA=CA0(1X)(1+ϵX)Constant P and T C_A = \frac{C_{A0}(1-X)}{(1 + \epsilon X)} \cdots \text{Constant P and T}

CA=CA0(1X)(1+X/3)X=0.6CA=0.2(10.6)(1+0.6/3)=0.1mol/dm3 C_A = \frac{C_{A0}(1-X)}{(1 + X/3)} \rightarrow X = 0.6 \rightarrow C_A = \frac{0.2 (1 - 0.6)}{(1 + 0.6/3)} = 0.1 mol/dm^3

CC=23CA0(X)(1+ϵX)X=0.6CC=230.2×0.6(1+0.6/3)=0.1mol/dm3 C_C = \frac{2}{3} \frac{C_{A0}(X)}{(1 + \epsilon X)} \rightarrow X = 0.6 \rightarrow C_C = \frac{2}{3} \frac{0.2 \times 0.6}{(1 + 0.6/3)} = 0.1 mol/dm^3

  1. rA-r_A as f(X)f(X), kN2=40dm3/molsk_{N_2} = 40 dm^3/mol s
  1. Flow reactor

rN2=kN2CN21/2CH23/2 -r_{N_2} = k_{N_2} C_{N_2}^{1/2} C_{H_2}^{3/2}

rN2=40[CA0(ΘBX/3)(1+ϵX)]1/2[CA0(1X)(1+ϵX)]3/2 -r_{N_2} = 40 \left[ \frac{C_{A0} (\Theta_B - X/3)}{(1 + \epsilon X)} \right]^{1/2} \left[ \frac{C_{A0} (1 - X)}{(1 + \epsilon X)} \right]^{3/2}

rN2=40CA02[(1X)(1X/3)]3/2=1.6[(1X)(1X/3)]3/2 -r_{N_2} = 40 C_{A0}^2 \left[ \frac{(1- X)}{(1 - X/3)} \right]^{3/2} = 1.6 \left[ \frac{(1- X)}{(1 - X/3)} \right]^{3/2}

  1. For constant volume batch reactor

rN2=kN2CN21/2CH23/2 -r_{N_2} = k_{N_2} C_{N_2}^{1/2} C_{H_2}^{3/2}

rN2=40CA02(1X/3)1/2(1X)3/2=1.6(1X/3)1/2(1X)3/2 -r_{N_2} = 40 C_{A0}^2 (1- X/3)^{1/2} (1 - X)^{3/2} = 1.6 (1- X/3)^{1/2} (1 - X)^{3/2}

P 4-11

Consider a cylindrical batch reactor that has one end fitted with a frictionless piston attached to a spring (See Figure ). The reaction

A+B8C \ce{A + B -> 8 C}

with the rate law

rA=k1CA2CB-r_A = k_1 C_A^2 C_B

is taking place in this type of reactor.

Figure 1: Cylindrical batch reactor
  1. Write the rate law solely as a function of conversion, numerically evaluating all possible symbols.

  2. What is the conversion and rate of reaction when V=0.2 ft3V=0.2 \ ft^3 ?

Additional information:

Equal moles of A and B are present at t0t_0

Initial volume: 0.15 ft30.15 \ ft^3

Value of k1:1.0 (ft3/lbmol)2s1k_1 : 1.0 \ (ft^3 /lb mol)^2 \cdot s^{-1}

The spring constant is such that the relationship between the volume of the reactor and pressure within the reactor is

V=(0.1) (P)V = (0.1)\ (P) (V in ft3ft^3 , P in atmatm)

Temperature of system (considered constant): 140 F140 \ ^{\circ}F

Gas constant: 0.73 ft3atm/lbmolR0.73 \ ft^3 atm/lb mol \cdot ^{\circ}R

  1. Rate law as f(X)

yA0=NA0NA0+NB0=0.5 y_{A0} = \frac{N_{A0}}{N_{A0} + N_{B0}} = 0.5

δ=811=6 \delta = 8 - 1 - 1 = 6

ϵ=yA0δ=3 \epsilon = y_{A0} \delta = 3

V=V0(1+ϵX)P0PTT0 V = V_0 (1 + \epsilon X) \frac{P_0}{P} \frac{T}{T_0}

P0=10V0;P=10V P_0 = 10 V_0; P = 10 V

V=10V0210V(1+ϵX) V = \frac{10 V_0^2}{10 V} (1 + \epsilon X)

V2=V02(1+ϵX) V^2 = V_0^2 (1 + \epsilon X)

NA=NA0(1X);NB=NA0(ΘBX) N_A = N_{A0}(1 - X); N_B = N_{A0} (\Theta_B - X)

ΘB=NB0NA0=1 \Theta_B = \frac{N_{B0}}{N_{A0}} = 1

rA=kCA2CB=kNA2NBV2=kNA03(1X)3V03(1+ϵX)3/2 -r_A = k C_A^2 C_B = \frac{k N_A^2 N_B}{V^2} = \frac{k N_{A0}^3 (1-X)^3}{V_0^3 (1 + \epsilon X)^3/2}

NA0V0=yA0PRT \frac{N_{A0}}{V_0} = \frac{y_{A0} P}{RT}

rA=k(yA0P0RT)3((1X)(1+ϵX)1/2)3 \therefore -r_A = k \left( \frac{y_{A0} P_0}{RT} \right)^3 \left( \frac{(1-X)}{(1 + \epsilon X)^{1/2}} \right)^3

rA=5.02×109((1X)(1+ϵX)1/2)3 -r_A = 5.02 \times 10^{-9} \left( \frac{(1-X)}{(1 + \epsilon X)^{1/2}} \right)^3

  1. XX and rA-r_A at V=0.2ft3V = 0.2 ft^3

V2=V02(1+ϵX) V^2 = V_0^2 (1 + \epsilon X)

(0.2)2=(0.15)2(1+3X)X=0.259 (0.2)^2 = (0.15)^2 (1 + 3 X) \Rightarrow X = 0.259

rA=8.623×1010lbmol/ft3s -r_A = 8.623 \times 10^{-10} lbmol/ft^3 s

References

Fogler, H. Scott. 2016. Elements of Chemical Reaction Engineering. Fifth edition. Boston: Prentice Hall.

Citation

BibTeX citation:
@online{utikar2024,
  author = {Utikar, Ranjeet},
  title = {Solutions to Workshop 03: {Rate} Law and Stoichiometry},
  date = {2024-03-10},
  url = {https://cre.smilelab.dev/content/workshops/03-rate-law-and-stoichiometry/solutions.html},
  langid = {en}
}
For attribution, please cite this work as:
Utikar, Ranjeet. 2024. “Solutions to Workshop 03: Rate Law and Stoichiometry.” March 10, 2024. https://cre.smilelab.dev/content/workshops/03-rate-law-and-stoichiometry/solutions.html.