Solutions to workshop 03: Rate law and stoichiometry

Lecture notes for chemical reaction engineering

Ranjeet Utikar

2024-03-10

Try following problems from Fogler 5e(Fogler 2016).
P3-5, P3-10, P3-11, P3-12, P 4-6, P 4-8, P 4-11
We will go through some of these problems in the workshop.

P 3.12

Write the rate law for the following reactions assuming each reaction follows an elementary rate law. Give the units of k_{A} for each, keeping in mind some are homogeneous and some reactants are heterogeneous.

1. $\mathrm{C}_{2} \mathrm{H}_{6} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{H}_{2}$
2. $\mathrm{C}_{2} \mathrm{H}_{4}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
3. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3} \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{6}+2 \mathrm{CH}_{3} \mathrm{COCH}_{3}$
4. $\mathrm{nC}_{4} \mathrm{H}_{10} \rightleftharpoons \mathrm{iC}_{4} \mathrm{H}_{10}$
5. $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{4} \mathrm{H}_{9}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
6. $2 \mathrm{CH}_{3} \mathrm{NH}_{2} \underset{\text { cat }}{\rightleftharpoons}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}+\mathrm{NH}_{3}$
7. $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons 2 \mathrm{CH}_{3} \mathrm{COOH}$

Solution

1. $-r_{A}=k C_{A}$
2. $-r_{A}=k C_{A} C_{B}^{1 / 2}$
3. $-r_{A}=k\left(C_{A}-\frac{C_{B} C_{C}}{K}\right)$
4. $-r_{A}=k\left(C_{A}-\frac{C_{B}}{K}\right)$
5. $-r_{A}=k\left(C_{A} C_{B}-\frac{C_{C} C_{D}}{K}\right)$
6. $-r_{A}^{\prime}=k\left(P_{A}^{2}-\frac{P_{B} P_{C}}{K}\right)$
7. $-r_{A}=k\left(C_{A} C_{B}-\frac{C_{C}^{2}}{K}\right)$

P3-10

The initial reaction rate for the elementary reaction $2 \mathrm{~A}+\mathrm{B} \longrightarrow 4 \mathrm{C}$ was measured as a function of temperature when the concentration of A was 2 M and that of B was 1.5 M .

$-r_{A}\left(\mathrm{~mol} / \mathrm{dm} \mathrm{m}^{3} \mathrm{~s}\right)$	$T(\mathrm{~K})$
0.002	300
0.046	320
0.72	340
8.33	360

1. What is the activation energy?
2. What is the frequency factor?
3. What is the rate constant as a function of temperature using Equation 1 and $T_{0}=27^{\circ} \mathrm{C}$ as the base case?

$$
\begin{equation*}
k(T)=k\left(T_{0}\right) \exp \left[\frac{E}{R}\left(\frac{1}{T_{0}}-\frac{1}{T}\right)\right] \tag{1}
\end{equation*}
$$

Solution

$2 \mathrm{~A}+\mathrm{B} \longrightarrow 4 \mathrm{C}$. Elementary reaction. Initial rates given.
For elementary reaction
$-r_{A}=k C_{A}^{2} C_{B}$
$k=\frac{-r_{A}}{C_{A}^{2} C_{B}}$
$k=\frac{-r_{A}}{C_{A}^{2} C_{B}}$
At the start of reaction:
$k=\frac{-r_{A 0}}{C_{A 0}^{2} C_{B 0}}$

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import linregress
# Data
r_A = np.array([0.002, 0.046, 0.72, 8.33])
T = np.array([300, 320, 340, 360])
R = 8.314 # J/mol K
C_AO = 2.0
C_B0 = 1.5
k = r_A/(C_AO**2 * C_BO)
ln_k = np.log(k)
inv_T = 1 / T
slope, intercept, r_value, p_value, std_err = linregress(inv_T, ln_k)
line = slope * inv_T + intercept
activation_energy = -slope*R/1000 # (kJ/mol)
AO = np.exp(intercept)
# Plot
plt.scatter(inv_T, ln_k, color='blue', label='Data points')
plt.plot(inv_T, line, color='red', label='Fit line')
# Labels and title
plt.xlabel('1/T (1/K)')
plt.ylabel('ln(k)')
plt.title('Linear Fit of ln(k) vs 1/T')
plt.legend()
slope_text = f'Slope: {slope:.2f}'
intercept_text = f'Intercept: {intercept:.2f}'
e_text = f'Activation Energy: {activation_energy:.2f} kJ/mol'
a0_text = f'Frequency factor: {A0:.2e} $dm^6/mol^2 s$'
plt.annotate(f'{slope_text}\n{intercept_text}\n{e_text}\n{a0_text}', xy=(0.05, 0.25),
# Show plot
plt.show()
```


P 4-8

The gas-phase reaction

$$
\frac{1}{2} \mathrm{~N}_{2}+\frac{3}{2} \mathrm{H}_{2} \longrightarrow \mathrm{NH}_{3}
$$

is to be carried out isothermally first in a flow reactor. The molar feed is $50 \% \mathrm{H}_{2}$ and $50 \% \mathrm{~N}_{2}$, at a pressure of 16.4 atm and at a temperature of $227^{\circ} \mathrm{C}$?
(a) Construct a complete stoichiometric table.
(b) Express the concentrations in $\mathrm{mol} / \mathrm{dm}^{3}$ of each for the reacting species as a function of conversion. Evaluate $C_{A 0}, \delta$ and ϵ, and then calculate the concentrations of ammonia and hydrogen when the conversion of H_{2} is 60%.
(c) Suppose by chance the reaction is elementary with $k_{N_{2}}=40 \mathrm{dm}^{3} / \mathrm{mol} / \mathrm{s}$. Write the rate of reaction solely as a function of conversion for
(1) a flow reactor, and for
(2) a constant-volume batch reactor.

Solution

Gas phase reaction

$$
\frac{1}{2} \mathrm{~N}_{2}+\frac{3}{2} \mathrm{H}_{2} \longrightarrow \mathrm{NH}_{3}
$$

$y_{A}=0.5$
$y_{B}=0.5$
$P=16.4 \mathrm{~atm}$
$T=227^{\circ} C=500 K$
a. stoichiometric table

Basis of reaction: H_{2}

$$
\mathrm{H}_{2}+\frac{1}{3} \mathrm{~N}_{2} \longrightarrow \frac{2}{3} \mathrm{NH}_{3} ; \quad \mathrm{A}+\frac{1}{3} \mathrm{~B} \longrightarrow \frac{2}{3} \mathrm{C}
$$

Species	Entering	Change	Exiting
A	$F_{A 0}$	$-F_{A 0} X$	$F_{A}=F_{A 0}(1-X)$
B	$F_{B 0}=\Theta_{B} F_{A 0}$	$-F_{A 0} X / 3$	$F_{A}=$
C	0	$+(2 / 3) F_{A 0} X$	$F_{A 0}\left(\Theta_{B}-X / 3\right)$
			$F_{C}=(2 / 3) F_{A 0} X$

$B=1$
b. Conc. in $\mathrm{mol} / d m^{3}$ as $f(X)$

$$
\begin{gathered}
\delta=c / a-b / a-1=2 / 3-1 / 3-1=-2 / 3 \\
\epsilon=y_{A 0} \delta=0.5 \delta=-1 / 3 \\
C_{A 0}=0.2 \\
C_{A}=\frac{C_{A 0}(1-X)}{(1+\epsilon X)} \cdots \text { Constant P and } \mathrm{T} \\
C_{A}=\frac{C_{A 0}(1-X)}{(1+X / 3)} \rightarrow X=0.6 \rightarrow C_{A}=\frac{0.2(1-0.6)}{(1+0.6 / 3)}=0.1 \mathrm{~mol} / \mathrm{dm}^{3} \\
C_{C}=\frac{2}{3} \frac{C_{A 0}(X)}{(1+\epsilon X)} \rightarrow X=0.6 \rightarrow C_{C}=\frac{2}{3} \frac{0.2 \times 0.6}{(1+0.6 / 3)}=0.1 \mathrm{~mol} / \mathrm{dm}^{3}
\end{gathered}
$$

c. $-r_{A}$ as $f(X), k_{N_{2}}=40 \mathrm{dm}^{3} / \mathrm{mols}$

1. Flow reactor

$$
\begin{gathered}
-r_{N_{2}}=k_{N_{2}} C_{N_{2}}^{1 / 2} C_{H_{2}}^{3 / 2} \\
-r_{N_{2}}=40\left[\frac{C_{A 0}\left(\Theta_{B}-X / 3\right)}{(1+\epsilon X)}\right]^{1 / 2}\left[\frac{C_{A 0}(1-X)}{(1+\epsilon X)}\right]^{3 / 2} \\
-r_{N_{2}}=40 C_{A 0}^{2}\left[\frac{(1-X)}{(1-X / 3)}\right]^{3 / 2}=1.6\left[\frac{(1-X)}{(1-X / 3)}\right]^{3 / 2}
\end{gathered}
$$

2. For constant volume batch reactor

$$
\begin{gathered}
-r_{N_{2}}=k_{N_{2}} C_{N_{2}}^{1 / 2} C_{H_{2}}^{3 / 2} \\
-r_{N_{2}}=40 C_{A 0}^{2}(1-X / 3)^{1 / 2}(1-X)^{3 / 2}=1.6(1-X / 3)^{1 / 2}(1-X)^{3 / 2}
\end{gathered}
$$

P 4-11

Consider a cylindrical batch reactor that has one end fitted with a frictionless piston attached to a spring (See Figure Figure 1). The reaction

$$
\mathrm{A}+\mathrm{B} \longrightarrow 8 \mathrm{C}
$$

with the rate law
$-r_{A}=k_{1} C_{A}^{2} C_{B}$
is taking place in this type of reactor.

Figure 1: Cylindrical batch reactor
(a) Write the rate law solely as a function of conversion, numerically evaluating all possible symbols.
(b) What is the conversion and rate of reaction when $V=0.2 \mathrm{ft}^{3}$?

Additional information:
Equal moles of A and B are present at t_{0}
Initial volume: $0.15 \mathrm{ft}^{3}$
Value of $k_{1}: 1.0\left(\mathrm{ft}^{3} / \mathrm{lbmol}\right)^{2} \cdot \mathrm{~s}^{-1}$
The spring constant is such that the relationship between the volume of the reactor and pressure within the reactor is
$V=(0.1)(P)\left(\mathrm{V}\right.$ in $f t^{3}, \mathrm{P}$ in atm$)$
Temperature of system (considered constant): $140^{\circ} \mathrm{F}$
Gas constant: $0.73 \mathrm{ft}^{3} \mathrm{~atm} / \mathrm{lbmol} .{ }^{\circ} R$

Solution

a. Rate law as $\mathrm{f}(\mathrm{X})$

$$
\begin{gathered}
y_{A 0}=\frac{N_{A 0}}{N_{A 0}+N_{B 0}}=0.5 \\
\delta=8-1-1=6 \\
\epsilon=y_{A 0} \delta=3 \\
V=V_{0}(1+\epsilon X) \frac{P_{0}}{P} \frac{T}{T_{0}}
\end{gathered}
$$

$$
\begin{gathered}
P_{0}=10 V_{0} ; P=10 V \\
V=\frac{10 V_{0}^{2}}{10 V}(1+\epsilon X) \\
V^{2}=V_{0}^{2}(1+\epsilon X) \\
N_{A}=N_{A 0}(1-X) ; N_{B}=N_{A 0}\left(\Theta_{B}-X\right) \\
\Theta_{B}=\frac{N_{B 0}}{N_{A 0}}=1 \\
-r_{A}=k C_{A}^{2} C_{B}=\frac{k N_{A}^{2} N_{B}}{V^{2}}=\frac{k N_{A 0}^{3}(1-X)^{3}}{V_{0}^{3}(1+\epsilon X)^{3} / 2} \\
\frac{N_{A 0}}{V_{0}}=\frac{y_{A 0} P}{R T} \\
\therefore-r_{A}=k\left(\frac{y_{A 0} P_{0}}{R T}\right)^{3}\left(\frac{(1-X)}{(1+\epsilon X)^{1 / 2}}\right)^{3} \\
-r_{A}=5.02 \times 10^{-9}\left(\frac{(1-X)}{(1+\epsilon X)^{1 / 2}}\right)^{3}
\end{gathered}
$$

b. X and $-r_{A}$ at $V=0.2 f t^{3}$

$$
\begin{gathered}
V^{2}=V_{0}^{2}(1+\epsilon X) \\
(0.2)^{2}=(0.15)^{2}(1+3 X) \Rightarrow X=0.259 \\
-r_{A}=8.623 \times 10^{-10} \mathrm{lbmol} / \mathrm{ft}^{3} \mathrm{~s}
\end{gathered}
$$

Fogler, H. Scott. 2016. Elements of Chemical Reaction Engineering. Fifth edition. Boston: Prentice Hall.

