In class activity: Reaction mechanisms and catalysis

Lecture notes for chemical reaction engineering

Author
Published

March 23, 2024

Modified

May 12, 2024

Gas phase decomposition of azomethane

Consider the gas-phase decomposition of azomethane, AZO, to give ethane and nitrogen

(CHX3)X2NX2CX2HX6+NX2 \ce{(CH3)2N2 -> C2H6 + N2}

Experimental observations show that the rate of formation of ethane is first order with respect to AZO at pressures greater than 1 atm (relatively high concentrations)

rCX2HX6CAZO r_{\ce{C2H6}} \propto C_{AZO}

and second order at pressures below 50 mmHg (low concentrations):

rCX2HX6CAZO2 r_{\ce{C2H6}} \propto C_{AZO}^2

We could combine these two observations to postulate a rate law of the form

rCX2HX6=k1CAZO21+k2CAZO r_{\ce{C2H6}} =\frac{ k_1 C_{AZO}^2 } { 1 + k_2 C_{AZO} }

find a mechanism that is consistent with the experimental observations

Step 1: Propose an active intermediate.

We will choose as an active intermediate an azomethane molecule that has been excited through molecular collisions, to form AZO\ce{AZO*}, that is, [(CHX3)X2NX2]\ce{[(CH3)2N2]*}.

Step 2: Propose a mechanism

Reaction 1: (CHX3)X2NX2+(CHX3)X2NX2kX1(CHX3)X2NX2+[(CHX3)X2NX2]\ce{(CH3)2N2 + (CH3)2N2 ->[k_{1}] (CH3)2N2 + [(CH3)2N2]* }

Reaction 2: [(CHX3)X2NX2]+(CHX3)X2NX2kX2(CHX3)X2NX2+(CHX3)X2NX2\ce{[(CH3)2N2]* + (CH3)2N2 ->[k_{2}] (CH3)2N2 + (CH3)2N2 }

Reaction 3: [(CHX3)X2NX2]kX3CX2HX6+NX2\ce{[(CH3)2N2]* ->[k_{3}] C2H6 + N2}

Step 3: Write rate laws

Reaction 1: r1=k1CAZO2r_{1} = k_1 C_{AZO}^2

Reaction 2: r2=k2CAZOCAZOr_2 = -k_2 C_{\ce{AZO*}} C_{\ce{AZO}}

Reaction 3: r3=k3CAZOr_3 = -k_3 C_{\ce{AZO*}}

Step 4: Write rate of formation of product.

rCX2HX6=k3CAZOr_{\ce{C2H6}} = k_3 C_{\ce{AZO*}}

Step 5: Write net rate of formation of the active intermediate and use the PSSH

rAZO=r1+r2+r3r_{\ce{AZO*}} = r_{1} + r_{2} + r_{3}

rAZO=k1CAZO2k2CAZOCAZOk3CAZO=0r_{\ce{AZO*}} = k_1 C_{\ce{AZO}}^2 - k_2 C_{\ce{AZO*}} C_{\ce{AZO}} - k_3 C_{\ce{AZO*}} = 0

Solving for CAZOC_{\ce{AZO*}}

CAZO=k1CAZO2k2CAZO+k3 C_{\ce{AZO*}} = \frac{k_1 C_{\ce{AZO}}^2} {k_2 C_{\ce{AZO}} + k_3}

Step 6: Eliminate the concentration of the active intermediate species in the rate laws by solving the simultaneous equations developed in Steps 4 and 5.

rCX2HX6=k1k3CAZO2k2CAZO+k3 r_{\ce{C2H6}} = \frac{k_1 k_3 C_{\ce{AZO}}^2} {k_2 C_{\ce{AZO}} + k_3}

Step 7: Compare with experimental data.

At low AZO concentrations, k2CAZOk3k_2 C_{\ce{AZO}} \ll k_3

for which case we obtain the following second-order rate law:

rCX2HX6=k1CAZO2 r_{\ce{C2H6}} = k_1 C_{\ce{AZO}}^2

At high concentrations k2CAZOk3k_2 C_{\ce{AZO}} \gg k_3

in which case the rate expression follows first-order kinetics

rCX2HX6=kCAZO r_{\ce{C2H6}} = k C_{\ce{AZO}}

Nitric oxide combustion

Find the reaction rate law of the following reaction

2NO+OX22NOX2\ce{2 NO + O2 -> 2 NO2}

Experimental result: At low NO\ce{NO} concentration, the reaction rate decreases with increasing temperature.

Step 1: Propose an active intermediate.

We will choose as an active intermediate NOX3\ce{NO3*}.

Step 2: Propose a mechanism

Reaction 1: NO+OX2kX1NOX3\ce{NO + O2 ->[k_{1}] NO3*}

Reaction 2: NOX3kX2NO+OX2\ce{NO3* ->[k_{2}] NO + O2}

Reaction 3: NOX3+NOkX32NOX2\ce{NO3* + NO ->[k_{3}] 2NO2}

Step 3: Write rate laws

Reaction 1: r1,NOX3=k1CNOCOX2r_{1, \ce{NO3*}} = k_1 C_{\ce{NO}} C_{\ce{O2}}

Reaction 2: r2,NOX3=k2CNOX3r_{2, \ce{NO3*}}= -k_2 C_{\ce{NO3*}}

Reaction 3: r3,NOX2=k3CNOX3CNOr_{3, \ce{NO2}} = k_3 C_{\ce{NO3*}} C_{\ce{NO}}

Step 4: Write rate of formation of product.

rNOX2=k3CNOX3CNOr_{\ce{NO2}} = k_3 C_{\ce{NO3*}} C_{\ce{NO}}

Step 5: Write net rate of formation of the active intermediate and use the PSSH

rNOX3=r1r2r3/2r_{\ce{NO3*}} = r_{1} - r_{2} - r_{3}/2

rNOX3=k1CNOCOX2k2CNOX3k32CNOX3CNO=0r_{\ce{NO3*}} = k_1 C_{\ce{NO}} C_{\ce{O2}} - k_2 C_{\ce{NO3*}} - \frac{k_3}{2} C_{\ce{NO3*}} C_{\ce{NO}} = 0

Solving for CNOX3C_{\ce{NO3*}}

CNOX3=k1CNOCOX2k2+k32CNO C_{\ce{NO3*}} = \frac{k_1 C_{\ce{NO}} C_{\ce{O2}}} {k_2 + \frac{k_3}{2} C_{\ce{NO}}}

Step 6: Eliminate the concentration of the active intermediate species in the rate laws by solving the simultaneous equations developed in Steps 4 and 5.

At low NO concentrations, k2k32CNOk_2 \gg \frac{k_3}{2} C_{\ce{NO}}

CNOX3=k1k2CNOCOX2 C_{\ce{NO3*}} = \frac{k_1}{k_2} C_{\ce{NO}} C_{\ce{O2}}

rNOX2=k1k3k2CNO2COX2 r_{\ce{NO2}} = \frac{k_1 k_3}{k_2} C_{\ce{NO}}^2 C_{\ce{O2}}

Step 7: Compare with experimental data.

Experimental result: At low NO\ce{NO} concentration, the reaction rate decreases with increasing temperature.

rNOX2=A1A3A2exp[E2(E1+E3)RT]CNO2COX2 r_{\ce{NO2}} = \frac{A_1 A_3}{A_2} \exp\left[ \frac{E_2 - (E_1 + E_3)}{RT}\right] C_{\ce{NO}}^2 C_{\ce{O2}}

For reaction rate to decrease with temperature, E2>E1+E3E_2 > E_1 + E_3

Decomposition of cumene to form benzene and propylene

Develop rate laws for catalytic decomposition of cumene to form benzene and propylene.

CX6HX5CH(CHX3)X2CX6HX6+CX3HX6 \ce{ C6H5CH(CH3)2 -> C6H6 + C3H6 }

Reaction: Cumene (C)Benzene (B)+Propylene (P)\ce{Cumene (C) -> Benzene (B) + Propylene (P)}

Steps:

Figure 1: Sequence of steps in a reaction-limited catalytic reaction.

Adsorption:

C+SkXAkXACS \ce{ C + S <=>[k_A][k_{-A}] C*S}

Surface reaction:

CSkXSkXSBS+P \ce{C*S <=>[k_S][k_{-S}] B*S + P}

Desorption:

BSkXDkXDB+S \ce{B*S <=>[k_D][k_{-D}] B + S}

Reaction rates:

Adsorption:

rAD=kAPCCVkACCS;rAD=kA(PCCVCCSKA) r_{AD} = k_A P_C C_V - k_{-A} C_{\ce{C*S}}; \qquad r_{AD} = k_A \left(P_C C_V - \frac{C_{\ce{C*S}}}{K_A} \right)

Surface reaction:

rS=kSCCSkSPPCBS;rS=kS(CCSPPCBSKS) r_{S} = k_S C_{\ce{C*S}} - k_{-S} P_P C_{\ce{B*S}} -; \qquad r_{S} = k_S \left(C_{\ce{C*S}} - \frac{P_P C_{\ce{B*S}}}{K_S} \right)

Desorption:

rD=kDCBSkDPBCV;rD=kD(CBSPBCVKDB); r_{D} = k_D C_{\ce{B*S}} - k_{-D} P_B C_V; \qquad r_{D} = k_D \left(C_{\ce{B*S}} - \frac{P_B C_V}{K_{DB}} \right);

KB=1KDB;rD=kD(CBSKBPBCV) K_B = \frac{1}{K_{DB}}; \Rightarrow r_{D} = k_D \left( C_{\ce{B*S}} - K_B P_B C_V \right)

For steady state operations the reaction rates of these three steps are equal.

rC=rAD=rS=rD -r'_C = r_{AD} = r_S = r_D

Case 1: Adsorption of Cumene Rate-Limiting

rC=rAD=kA(PCCVCCSKA) -r'_C = r_{AD} = k_A \left(P_C C_V - \frac{C_{\ce{C*S}}}{K_A} \right)

Because we cannot measure either CVC_V or CCSC_{\ce{C*S}}, we must replace these variables in the rate law with measurable quantities in order for the equation to be meaningful.

For adsorption-limited reactions, the surface-specific reaction rate kSk_S, and desorption-specific reaction rate kDk_D are large by comparison, and we can set

rSkS0; and rDkD0 \frac{r_S}{k_S} \approx 0; \text{ and } \frac{r_D}{k_D} \approx 0

Therefore,

CCS=CBSPPKS C_{\ce{C*S}} = \frac{C_{\ce{B*S}} P_P}{K_S}

And,

CBS=KBPBCV C_{\ce{B*S}} = K_B P_B C_V

Combining,

CCS=KBPBPPKSCV C_{\ce{C*S}} = K_B \frac{P_B P_P}{K_S} C_V

and

rC=kA(PCCVKBPBPPCVKSKC) -r'_{C} = k_A \left( P_C C_V - \frac{K_B P_B P_P C_V}{K_S K_C} \right)

The concentration of vacant sites, CVC_V, can now be eliminated by utilizing the site balance to give the total concentration of sites, CtC_t which is assumed constant.

Ct=CV+CCS+CBS C_t = C_V + C_{\ce{C*S}} + C_{\ce{B*S}}

Ct=CV+KBPBPPCVKS+KBPBCV C_t = C_V + \frac{K_B P_B P_P C_V}{K_S} + K_B P_B C_V

Solving for CVC_V we have

CV=Ct1+KBPPPBKS+KBPB C_V = \frac{C_t}{1 + \frac{K_B P_P P_B}{K_S} + K_B P_B}

and the rate equation

rC=CtkA(PCPBPPKP)1+KBPPPBKS+KPPB r'_{C} = \frac{C_t k_A \left( P_C - \frac{P_B P_P}{K_P} \right)} {1 + \frac{K_B P_P P_B}{K_S} + K_P P_B}

At t = 0 min we have PC=PC,0P_C = P_{C,0}, PP=0P_P = 0 (no product) and PB=0P_B = 0 (no product)

rCO=rAD=CtkAPCO=kPCO -r'_{CO} = r_{AD} = C_t k_A P_{CO} = k P_{CO}

Plot initial rate rC,0 vs. PC,0-r'_{C,0} \text{ vs. } P_{C,0} is linear.

Case 2: Surface Reaction Rate-Limiting

rC=rS=kS(CCSPPCBSKS) -r'_C = r_{S} = k_S \left(C_{\ce{C*S}} - \frac{P_P C_{\ce{B*S}}}{K_S} \right)

  • kSk_S : small
  • kAk_A : large or rAD/kA0r_{AD}/k_{A} \approx 0
  • kDk_D : large or rD/kD0r_{D}/k_{D} \approx 0

From Adsorption reaction

CS=KCPCCV \ce{C*S} = K_C P_C C_V

From Desorption reaction

BS=KBPBCV \ce{B*S} = K_B P_B C_V

From site balance

CV=Ct1+KBPB+KCPC C_V = \frac{C_t}{1 + K_B P_B + K_C P_C}

Therefore,

rS=kSKCCt(PCPBPPKB)1+KBPB+KCPC r_S = \frac{k_S K_C C_t \left( P_C - \frac{P_B P_P}{K_B} \right)}{1 + K_B P_B + K_C P_C}

At t = 0

rC,0=rS=kPC,01+KCPC,0;k=kSKCCt -r'_{C,0} = r_S = \frac{k P_{C,0}}{1 + K_C P_{C,0}}; \qquad k = k_S K_C C_t

At low partial pressure of C we have 1KCPC,01 \gg K_C P_{C,0}

rC,0=kPC,0 -r'_{C,0} = k P_{C,0}

Initial rate increases linearly with the partial pressure of C

At high initial partial pressure of C we have KCPC,01K_C P_{C,0} \gg 1

rC,0=k/kC -r'_{C,0} = k/ k_C

Initial rate is constant.

Case 3: Desorption of Benzene the Rate-Limiting

rC=rD=kD(CBSKBPBCV) -r'_C = r_{D} = k_D \left( C_{\ce{B*S}} - K_B P_B C_V \right)

  • kDk_D : small
  • kAk_A : large or rAD/kA0r_{AD}/k_{A} \approx 0
  • kSk_S : large or rS/kS0r_{S}/k_{S} \approx 0

From adsorption reaction

CCS=KCPCCV C_{\ce{C*S}} = K_C P_C C_V

From surface reaction

CB,S=KS(CC,SPP) C_{B,S} = K_S \left( \frac{C_{C,S}}{P_P} \right)

From site balance

CV=Ct1+KCKSPCPP+KCPC C_V = \frac{C_t}{1 + K_C K_S \frac{P_C}{P_P} + K_C P_C}

Therefore reaction rate:

rC,0=rD=kDKCKSCt(PCPBPPKPPP+KCKSPC+KCPPPC) -r'_{C,0} = r_D = k_D K_C K_S C_t \left( \frac{P_C - \frac{P_B P_P}{K_P}} {P_P + K_C K_S P_C + K_C P_P P_C} \right)

At t = 0; rC,0=kDCt=constant-r'_{C,0} = k_D C_t = constant

Initial rate is constant.

Rate law for catalytic reaction

Find the reaction rate law of the reaction

SOX2+12OX2SOX3 \ce{ SO2 + 1/2 O2 -> SO3 }

Reaction: SOX2+12OX2SOX3 \ce{ SO2 + 1/2 O2 -> SO3 }

Mechanism:

Oxygen adsorption (V is vacant site):

OX2+2VkX1kX12OV \ce{ O2 + 2 V <=>[k_1][k_{-1}] 2 O*V }

Surface reaction:

OV+SOX2kX2kX2SOX3+V \ce{O*V + SO2 <=>[k_2][k_{-2}] SO3 + V}

Reaction rates:

Reaction 1: r1=k1PO2CV2k1COV2 r_1 = k_1 P_{O_2} C_V^2 - k_{-1} C_{\ce{O*V}}^2

Reaction 2:

r2=k2COVPSOX2k2PSOX3CV r_2 = k_2 C_{\ce{O*V}} P_{\ce{SO2}} - k_{-2} P_{\ce{SO3}} C_V

Assume reaction 2 is slow (rate limiting step)

Therefore, r1/k10r_1/ k_1 \approx 0

COV2=K1POX2CV2 \therefore C_{\ce{O*V}}^2 = K_1 P_{\ce{O2}} C_V^2

Rate for reaction 2 then becomes:

r2=k2(K1PO2)1/2CVPSO2k2PSO3CV r_2 = k_2 \left(K_1 P_{O_2}\right)^{1/2} C_V P_{SO_2} - k_{-2} P_{SO_3} C_V

Site balance:

Ct=CV+CS,O=CV+K11/2PO21/2CV C_t = C_V + C_{S,O} = C_V + K_1^{1/2} P_{O_2}^{1/2} C_V

CV=Ct1+(K1PO2)1/2 C_V = \frac{C_t}{1 + (K_1 P_{O_2})^{1/2}}

Substituting in equation for r2r_2

r2=k2(K1PO2)1/2PSO2Ct1+(K1PO2)1/2k2PSO3Ct1+(K1PO2)1/2 r_2 = \frac{k_2 \left(K_1 P_{O_2}\right)^{1/2} P_{SO_2} C_t}{1 + \left(K_1 P_{O_2}\right)^{1/2}} - \frac{k_{-2} P_{SO_3} C_t}{1 + \left(K_1 P_{O_2}\right)^{1/2}}

r2=k2CtPSO2(K1PO2)1/2k2CtPSO31+(K1PO2)1/2 r_2 = \frac{k_2 C_t P_{SO_2} \left(K_1 P_{O_2}\right)^{1/2} - k_{-2} C_t P_{SO_3}} {1 + \left(K_1 P_{O_2}\right)^{1/2}}

at t = 0

r2,0=k2CtPSO2(K1PO2)1/21+(K1PO2)1/2 r_{2,0} = \frac{k_2 C_t P_{SO_2} \left(K_1 P_{O_2}\right)^{1/2}}{1 + \left(K_1 P_{O_2}\right)^{1/2}}

Compare with the experimental data

  • Differential reactor
  • Measureable data
  • Keep PSOX2P_{\ce{SO2}} constant, change POX2P_{\ce{O2}}
  • Keep POX2P_{\ce{O2}} constant, change PSOX2P_{\ce{SO2}}

Surface reaction limiting reaction

The reaction A+BC+D\ce{ A + B <=> C + D } is carried out over a solid catalyst, the reaction mechanism is believed to be

A+SASB+SBSAS+BSCS DSCSC+SDSD+S \begin{gathered} \ce{A + S <=> A.S} \\ \ce{B + S <=> B.S} \\ \ce{A.S + B.S <=> C.S D.S} \\ \ce{C.S <=> C + S} \\ \ce{D.S <=> D + S} \end{gathered}

Assuming step 3 is the slowest step, derive the rate law for the reaction.

Reaction: A+BC+D \ce{ A + B <=> C + D }

Mechanism:

Adsorption:

A+SkX1kX1AS \ce{ A + S <=>[k_1][k_{-1}] A*S }

B+SkX2kX2BS \ce{ B + S <=>[k_2][k_{-2}] B*S }

Surface reaction:

AS+BSkX3kX3CS+DS \ce{A*S + B*S <=>[k_3][k_{-3}] C*S + D*S}

Desorption:

CSkX4kX4C+S \ce{ C*S <=>[k_4][k_{-4}] C + S }

DSkX5kX5D+S \ce{ D*S <=>[k_5][k_{-5}] D + S }

Reaction rates:

r1=k1PACVk1CASr2=k2PBCVk2CBSr3=k3CASCBSk3CCSCDSr4=k4CCSk4PCCVr5=k5CDSk5PDCV \begin{aligned} r_1 &= k_1 P_A C_V - k_{-1} C_{A \cdot S} \\ r_2 &= k_2 P_B C_V - k_{-2} C_{B \cdot S} \\ r_3 &= k_3 C_{A \cdot S} C_B \cdot S - k_{-3} C_{C \cdot S} C_{D \cdot S} \\ r_4 &= k_4 C_{C \cdot S} - k_{-4} P_C C_V \\ r_5 &= k_5 C_{D \cdot S} - k_{-5} P_D C_V \end{aligned}

and

K1=k1k1K2=k2k2K3=k3k3K4=k4k4K5=k5k5 \begin{aligned} K_1 &= \frac{k_1}{k_{-1}} \\ K_2 &= \frac{k_2}{k_{-2}} \\ K_3 &= \frac{k_3}{k_{-3}} \\ K_4 &= \frac{k_4}{k_{-4}} \\ K_5 &= \frac{k_5}{k_{-5}} \end{aligned}

Assume surface reaction is rate limiting

r3=k3CASCBSk3CCSCDS r_3 = k_3 C_{A \cdot S} C_{B \cdot S} - k_{-3} C_{C \cdot S} C_{D \cdot S}

We need to eliminate CAS,CBS,CCS, and CDSC_{A \cdot S}, C_{B \cdot S}, C_{C \cdot S}, \text{ and } C_{D \cdot S}

CAS=K1PACVCBS=K2PBCVCCS=K3PCCVCDS=K4PDCV \begin{aligned} C_{A \cdot S} &= K_1 P_A C_V \\ C_{B \cdot S} &= K_2 P_B C_V \\ C_{C \cdot S} &= K_3 P_C C_V \\ C_{D \cdot S} &= K_4 P_D C_V \end{aligned}

and r=k3K1K2PAPBCV2k3K4K5PCPDCV2 r = k_3 K_1 K_2 P_A P_B C_V^2 - k_{-3} K_4 K_5 P_C P_D C_V^2

Write site balance to calculate CVC_V:

Ct=CV+CAS+CBS+CCS+CDS C_t = C_V + C_{A \cdot S} + C_{B \cdot S} + C_{C \cdot S} + C_{D \cdot S}

CV=Ct1+K1PA+K2PB+K3PC+K4PD C_V = \frac{C_t}{1 + K_1 P_A + K_2 P_B + K_3 P_C + K_4 P_D}

Substituting

r=r3=k3K1K2PAPBCt2k3K4K5PCPDCt2(1+K1PA+K2PB+K3PC+K4PD)2 r = r_3 = \frac{k_3 K_1 K_2 P_A P_B C_t^2 - k_{-3} K_4 K_5 P_C P_D C_t^2} {\left(1 + K_1 P_A + K_2 P_B + K_3 P_C + K_4 P_D\right)^2}

Initial rates in differential reactor

at t = 0 PC,PD=0P_C, P_D = 0

r0=k3K1K2PAPBCt1+K1PA+K2PB r_0 = \frac{k_3 K_1 K_2 P_A P_B C_t}{1 + K_1 P_A + K_2 P_B}

Citation

BibTeX citation:
@online{utikar2024,
  author = {Utikar, Ranjeet},
  title = {In Class Activity: {Reaction} Mechanisms and Catalysis},
  date = {2024-03-23},
  url = {https://cre.smilelab.dev/content/notes/08-reaction-mechanisms-and-catalysis/in-class-activities.html},
  langid = {en}
}
For attribution, please cite this work as:
Utikar, Ranjeet. 2024. “In Class Activity: Reaction Mechanisms and Catalysis.” March 23, 2024. https://cre.smilelab.dev/content/notes/08-reaction-mechanisms-and-catalysis/in-class-activities.html.