A + B → D − r 1 A = 10 exp ( − 8000 K / T ) C A C B \ce{ A + B -> D } \qquad -r_{1A} = 10 \exp(-8000 K/T) C_A C_B A + B D − r 1 A = 10 exp ( − 8000 K / T ) C A C B
A + B → U − r 2 A = 100 exp ( − 1000 K / T ) C A 1 / 2 C B 3 / 2 \ce{ A + B -> U } \qquad -r_{2A} = 100 \exp(-1000 K/T) C_A^{1/2} C_B^{3/2} A + B U − r 2 A = 100 exp ( − 1000 K / T ) C A 1/2 C B 3/2
(a) A + B → D \ce{ A + B -> D } A + B D ; A + B → U \ce{ A + B -> U } A + B U
r D = − r 1 A = 10 exp ( − 8000 K / T ) C A C B
r_D = -r_{1A} = 10 \exp(-8000 K/T) C_A C_B
r D = − r 1 A = 10 exp ( − 8000 K / T ) C A C B
r U = − r 2 A = 100 exp ( − 1000 K / T ) C A 1 / 2 C B 3 / 2
r_U = -r_{2A} = 100 \exp(-1000 K/T) C_A^{1/2} C_B^{3/2}
r U = − r 2 A = 100 exp ( − 1000 K / T ) C A 1/2 C B 3/2
S D / U = r D r U = 10 exp ( − 8000 K / T ) C A C B 100 exp ( − 1000 K / T ) C A 1 / 2 C B 3 / 2
S_{D/U} = \frac{r_D}{r_U}
= \frac{
10 \exp(-8000 K/T) C_A C_B
}{
100 \exp(-1000 K/T) C_A^{1/2} C_B^{3/2}
}
S D / U = r U r D = 100 exp ( − 1000 K / T ) C A 1/2 C B 3/2 10 exp ( − 8000 K / T ) C A C B
S D / U = r D r U = exp ( − 8000 K / T ) C A 1 / 2 10 exp ( − 1000 K / T ) C B 1 / 2
S_{D/U} = \frac{r_D}{r_U}
= \frac{
\exp(-8000 K/T) C_A^{1/2}
}{
10 \exp(-1000 K/T) C_B^{1/2}
}
S D / U = r U r D = 10 exp ( − 1000 K / T ) C B 1/2 exp ( − 8000 K / T ) C A 1/2
To maximize S D / U S_{D/U} S D / U operate at:
High concentration of A
Low concentration of B
Reactors:
Semibatch: B is fed slowly into large amt of A
Tubular: Sidestream of B
Series of small CSTRs: A is fed to the first reactor, B is fed into all reactors
At 300 K: k 1 k_1 k 1 = 2.623e-11; k 2 k_2 k 2 = 3.567e+00; k 1 / k 2 k_1/k_2 k 1 / k 2 = 7.353e-12
At 1000 K: k 1 k_1 k 1 = 3.355e-03; k 2 k_2 k 2 = 3.679e+01 k 1 / k 2 k_1/k_2 k 1 / k 2 = 9.119e-05
E D > E U E_D > E_U E D > E U : specific rate for D increases much more rapidly than U with temperature
S D / U S_{D/U} S D / U is very low (E D > E U E_D > E_U E D > E U ): Operate at highest possible T
Need to keep ( C A / C B ) 1 / 2 > 10 6 (C_A/C_B)^{1/2} > 10^{6} ( C A / C B ) 1/2 > 1 0 6 : Drop by drop addition of B
A + B → D − r 1 A = 100 exp ( − 1000 K / T ) C A C B \ce{ A + B -> D } \qquad -r_{1A} = 100 \exp(-1000 K/T) C_A C_B A + B D − r 1 A = 100 exp ( − 1000 K / T ) C A C B
A + B → U − r 2 A = 10 6 exp ( − 8000 K / T ) C A C B \ce{ A + B -> U } \qquad -r_{2A} = 10^6 \exp(-8000 K/T) C_A C_B A + B U − r 2 A = 1 0 6 exp ( − 8000 K / T ) C A C B
(b) A + B → D \ce{ A + B -> D } A + B D ; A + B → U \ce{ A + B -> U } A + B U
− r 1 A = 100 exp ( − 1000 K / T ) C A C B
-r_{1A} = 100 \exp(-1000 K/T) C_A C_B
− r 1 A = 100 exp ( − 1000 K / T ) C A C B
− r 2 A = 10 6 exp ( − 8000 K / T ) C A C B
-r_{2A} = 10^6 \exp(-8000 K/T) C_A C_B
− r 2 A = 1 0 6 exp ( − 8000 K / T ) C A C B
S D / U = r D r U = 100 exp ( − 1000 K / T ) C A C B 10 6 exp ( − 8000 K / T ) C A C B
S_{D/U} = \frac{r_D}{r_U}
= \frac{
100 \exp(-1000 K/T) C_A C_B
}{
10^6 \exp(-8000 K/T) C_A C_B
}
S D / U = r U r D = 1 0 6 exp ( − 8000 K / T ) C A C B 100 exp ( − 1000 K / T ) C A C B
S D / U = r D r U = exp ( − 1000 K / T ) 10 4 exp ( − 8000 K / T )
S_{D/U} = \frac{r_D}{r_U}
= \frac{
\exp(-1000 K/T)
}{
10^4 \exp(-8000 K/T)
}
S D / U = r U r D = 1 0 4 exp ( − 8000 K / T ) exp ( − 1000 K / T )
S D / U S_{D/U} S D / U does not depend on concentration.
At 300 K: k 1 k_1 k 1 = 3.567e+00; k 2 k_2 k 2 = 2.623e-06; S D / U = k 1 / k 2 S_{D/U} = k_1/k_2 S D / U = k 1 / k 2 = 1.360e+06
At 1000 K: k 1 k_1 k 1 = 3.679e+01; k 2 k_2 k 2 = 3.355e+02 S D / U = k 1 / k 2 S_{D/U} = k_1/k_2 S D / U = k 1 / k 2 = 1.097e-01
A + B → D − r 1 A = 10 exp ( − 1000 K / T ) C A C B \ce{ A + B -> D } \qquad -r_{1A} = 10 \exp(-1000 K/T) C_A C_B A + B D − r 1 A = 10 exp ( − 1000 K / T ) C A C B
B + D → U − r 2 B = 10 9 exp ( − 10000 K / T ) C B C D \ce{ B + D -> U } \qquad -r_{2B} = 10^9 \exp(-10000 K/T) C_B C_D B + D U − r 2 B = 1 0 9 exp ( − 10000 K / T ) C B C D
(c) A + B → D \ce{ A + B -> D } A + B D ; B + D → U \ce{ B + D -> U } B + D U
− r 1 A = 10 exp ( − 1000 K / T ) C A C B
-r_{1A} = 10 \exp(-1000 K/T) C_A C_B
− r 1 A = 10 exp ( − 1000 K / T ) C A C B
− r 2 B = 10 9 exp ( − 10000 K / T ) C B C D
-r_{2B} = 10^9 \exp(-10000 K/T) C_B C_D
− r 2 B = 1 0 9 exp ( − 10000 K / T ) C B C D
S D / U = r D r U = 10 exp ( − 1000 K / T ) C A C B 10 9 exp ( − 10000 K / T ) C B C D
S_{D/U} = \frac{r_D}{r_U}
= \frac{
10 \exp(-1000 K/T) C_A C_B
}{
10^9 \exp(-10000 K/T) C_B C_D
}
S D / U = r U r D = 1 0 9 exp ( − 10000 K / T ) C B C D 10 exp ( − 1000 K / T ) C A C B
S D / U = r D r U = exp ( − 1000 K / T ) C A 10 8 exp ( − 10000 K / T ) C D
S_{D/U} = \frac{r_D}{r_U}
= \frac{
\exp(-1000 K/T) C_A
}{
10^8 \exp(-10000 K/T) C_D
}
S D / U = r U r D = 1 0 8 exp ( − 10000 K / T ) C D exp ( − 1000 K / T ) C A
S D / U ∝ C A C D S_{D/U} \propto \frac{C_A}{C_D} S D / U ∝ C D C A
To maximize S D / U S_{D/U} S D / U operate at:
High concentration of A
Low concentration of D
Reactors:
Membrane reactor: D is removed as it is formed
Reactive distillation.
At 300 K: k 1 k_1 k 1 = 3.567e-01; k 2 k_2 k 2 = 3.338e-06; k 1 / k 2 k_1/k_2 k 1 / k 2 = 1.069e+05
At 1000 K: k 1 k_1 k 1 = 3.679e+00; k 2 k_2 k 2 = 4.540e+04 k 1 / k 2 k_1/k_2 k 1 / k 2 = 8.103e-05
A → D − r 1 A = 4280 exp ( − 12000 K / T ) C A \ce{ A -> D } \qquad -r_{1A} = 4280 \exp(-12000 K/T) C_A A D − r 1 A = 4280 exp ( − 12000 K / T ) C A
D → U X 1 − r 2 D = 10100 exp ( − 15000 K / T ) C D \ce{ D -> U1 } \qquad -r_{2D} = 10100 \exp(-15000 K/T) C_D D U X 1 − r 2 D = 10100 exp ( − 15000 K / T ) C D
A → U X 2 − r 3 A = 26 exp ( − 18800 K / T ) C A \ce{ A -> U2 } \qquad -r_{3A} = 26 \exp(-18800 K/T) C_A A U X 2 − r 3 A = 26 exp ( − 18800 K / T ) C A
(d) A → D ; D → U X 1 ; A → U X 2 \ce{ A -> D }; \ce{ D -> U1 }; \ce{ A -> U2 } A D ; D U X 1 ; A U X 2
− r 1 A = 4280 exp ( − 12000 K / T ) C A
-r_{1A} = 4280 \exp(-12000 K/T) C_A
− r 1 A = 4280 exp ( − 12000 K / T ) C A
− r 2 D = 10100 exp ( − 15000 K / T ) C D
-r_{2D} = 10100 \exp(-15000 K/T) C_D
− r 2 D = 10100 exp ( − 15000 K / T ) C D
− r 3 A = 26 exp ( − 18800 K / T ) C A
-r_{3A} = 26 \exp(-18800 K/T) C_A
− r 3 A = 26 exp ( − 18800 K / T ) C A
S D / U = r D r U 1 + r U 2 = 4280 exp ( − 12000 K / T ) C A − 10100 exp ( − 15000 K / T ) C D 10100 exp ( − 15000 K / T ) C D + 26 exp ( − 18800 K / T ) C A
S_{D/U} = \frac{r_D}{r_{U_1} + r_{U_2}}
= \frac{
4280 \exp(-12000 K/T) C_A
- 10100 \exp(-15000 K/T) C_D
}{
10100 \exp(-15000 K/T) C_D
+ 26 \exp(-18800 K/T) C_A
}
S D / U = r U 1 + r U 2 r D = 10100 exp ( − 15000 K / T ) C D + 26 exp ( − 18800 K / T ) C A 4280 exp ( − 12000 K / T ) C A − 10100 exp ( − 15000 K / T ) C D
At 300 K: k 1 k_1 k 1 = 1.818e-14; k 2 k_2 k 2 = 1.948e-18; k 3 k_3 k 3 = 1.582e-26.
C A ≫ C D C_A \gg C_D C A ≫ C D : S D / U = k 1 / k 3 S_{D/U} = k_1/k_3 S D / U = k 1 / k 3 = 1.149e+12
C A ∼ C D C_A \sim C_D C A ∼ C D : S D / U = ( k 1 − k 2 ) / ( k 2 + k 3 ) S_{D/U} = (k_1 - k_2)/(k2 + k_3) S D / U = ( k 1 − k 2 ) / ( k 2 + k 3 ) = 9.333e+03
At 1000 K: k 1 k_1 k 1 = 2.630e-02; k 2 k_2 k 2 = 3.090e-03; k 3 k_3 k 3 = 1.779e-07.
C A ≫ C D C_A \gg C_D C A ≫ C D : S D / U = k 1 / k 3 S_{D/U} = k_1/k_3 S D / U = k 1 / k 3 = 1.478e+05
C A ∼ C D C_A \sim C_D C A ∼ C D : S D / U = ( k 1 − k 2 ) / ( k 2 + k 3 ) S_{D/U} = (k_1 - k_2)/(k2 + k_3) S D / U = ( k 1 − k 2 ) / ( k 2 + k 3 ) = 7.511e+00
A + B → D − r 1 A = 10 9 exp ( − 10000 K / T ) C A C B \ce{ A + B -> D } \qquad -r_{1A} = 10^9 \exp(-10000 K/T) C_A C_B A + B D − r 1 A = 1 0 9 exp ( − 10000 K / T ) C A C B
D → A + B − r 2 D = 20 exp ( − 2000 K / T ) C D \ce{ D -> A + B } \qquad -r_{2D} = 20 \exp(-2000 K/T) C_D D A + B − r 2 D = 20 exp ( − 2000 K / T ) C D
A + B → U − r 3 A = 10 3 exp ( − 3000 K / T ) C A C B \ce{ A + B -> U } \qquad -r_{3A} = 10^3 \exp(-3000 K/T) C_A C_B A + B U − r 3 A = 1 0 3 exp ( − 3000 K / T ) C A C B
(e) A + B → D ; D → A + B ; A + B → U \ce{ A + B -> D }; \ce{ D -> A + B }; \ce{ A + B -> U} A + B D ; D A + B ; A + B U
− r 1 A = 10 9 exp ( − 10000 K / T ) C A C B
-r_{1A} = 10^9 \exp(-10000 K/T) C_A C_B
− r 1 A = 1 0 9 exp ( − 10000 K / T ) C A C B
− r 2 D = 20 exp ( − 2000 K / T ) C D
-r_{2D} = 20 \exp(-2000 K/T) C_D
− r 2 D = 20 exp ( − 2000 K / T ) C D
− r 3 A = 10 3 exp ( − 3000 K / T ) C A C B
-r_{3A} = 10^3 \exp(-3000 K/T) C_A C_B
− r 3 A = 1 0 3 exp ( − 3000 K / T ) C A C B
S D / U = r D r U = 10 9 exp ( − 10000 K / T ) C A C B − 20 exp ( − 2000 K / T ) C D 10 3 exp ( − 3000 K / T ) C A C B
S_{D/U} = \frac{r_D}{r_{U}}
= \frac{
10^9 \exp(-10000 K/T) C_A C_B
- 20 \exp(-2000 K/T) C_D
}{
10^3 \exp(-3000 K/T) C_A C_B
}
S D / U = r U r D = 1 0 3 exp ( − 3000 K / T ) C A C B 1 0 9 exp ( − 10000 K / T ) C A C B − 20 exp ( − 2000 K / T ) C D
At 300 K: k 1 k_1 k 1 = 3.338e-06; k 2 k_2 k 2 = 2.545e-02; k 3 k_3 k 3 = 4.540e-02.
C A C B ≫ C D C_A C_B \gg C_D C A C B ≫ C D : S D / U = k 1 / k 3 S_{D/U} = k_1/k_3 S D / U = k 1 / k 3 = 7.353e-05
C A C B ∼ C D C_A C_B \sim C_D C A C B ∼ C D : S D / U = ( k 1 − k 2 ) / ( k 3 ) S_{D/U} = (k_1 - k_2)/(k_3) S D / U = ( k 1 − k 2 ) / ( k 3 ) = -5.606e-01
At 1000 K: k 1 k_1 k 1 = 4.540e+04; k 2 k_2 k 2 = 2.707e+00; k 3 k_3 k 3 = 4.979e+01.
C A C B ≫ C D C_A C_B \gg C_D C A C B ≫ C D : S D / U = k 1 / k 3 S_{D/U} = k_1/k_3 S D / U = k 1 / k 3 = 9.119e+02
C A C B ∼ C D C_A C_B \sim C_D C A C B ∼ C D : S D / U = ( k 1 − k 2 ) / ( k 3 ) S_{D/U} = (k_1 - k_2)/(k_3) S D / U = ( k 1 − k 2 ) / ( k 3 ) = 9.118e+02
A + B → D − r 1 A = 800 exp ( − 8000 K / T ) C A 0.5 C B \ce{ A + B -> D } \qquad -r_{1A} = 800 \exp(-8000 K/T) C_A^{0.5} C_B A + B D − r 1 A = 800 exp ( − 8000 K / T ) C A 0.5 C B
A + B → U X 1 − r 2 B = 10 exp ( − 300 K / T ) C A C B \ce{ A + B -> U1 } \qquad -r_{2B} = 10 \exp(-300 K/T) C_A C_B A + B U X 1 − r 2 B = 10 exp ( − 300 K / T ) C A C B
D + B → U X 2 − r 3 D = 10 6 exp ( − 8000 K / T ) C D C B \ce{ D + B -> U2 } \qquad -r_{3D} = 10^6 \exp(-8000 K/T) C_D C_B D + B U X 2 − r 3 D = 1 0 6 exp ( − 8000 K / T ) C D C B
(f) A + B → D ; A + B → U X 1 ; D + B → U X 2 \ce{ A + B -> D }; \ce{ A + B -> U1 }; \ce{ D + B -> U2 } A + B D ; A + B U X 1 ; D + B U X 2
− r 1 A = 800 exp ( − 8000 K / T ) C A 0.5 C B
-r_{1A} = 800 \exp(-8000 K/T) C_A^{0.5} C_B
− r 1 A = 800 exp ( − 8000 K / T ) C A 0.5 C B
− r 2 B = 10 exp ( − 300 K / T ) C A C B
-r_{2B} = 10 \exp(-300 K/T) C_A C_B
− r 2 B = 10 exp ( − 300 K / T ) C A C B
− r 3 D = 10 6 exp ( − 8000 K / T ) C D C B
-r_{3D} = 10^6 \exp(-8000 K/T) C_D C_B
− r 3 D = 1 0 6 exp ( − 8000 K / T ) C D C B
S D / U = r D r U 1 + r U 2 = 800 exp ( − 8000 K / T ) C A 0.5 C B − 10 6 exp ( − 8000 K / T ) C D C B 10 exp ( − 300 K / T ) C A C B + 10 6 exp ( − 8000 K / T ) C D C B
S_{D/U} = \frac{r_D}{r_{U_1} + r_{U_2}}
= \frac{
800 \exp(-8000 K/T) C_A^{0.5} C_B
- 10^6 \exp(-8000 K/T) C_D C_B
}{
10 \exp(-300 K/T) C_A C_B
+ 10^6 \exp(-8000 K/T) C_D C_B
}
S D / U = r U 1 + r U 2 r D = 10 exp ( − 300 K / T ) C A C B + 1 0 6 exp ( − 8000 K / T ) C D C B 800 exp ( − 8000 K / T ) C A 0.5 C B − 1 0 6 exp ( − 8000 K / T ) C D C B
S D / U = r D r U 1 + r U 2 = 800 exp ( − 8000 K / T ) C A 0.5 − 10 6 exp ( − 8000 K / T ) C D 10 exp ( − 300 K / T ) C A + 10 6 exp ( − 8000 K / T ) C D
S_{D/U} = \frac{r_D}{r_{U_1} + r_{U_2}}
= \frac{
800 \exp(-8000 K/T) C_A^{0.5}
- 10^6 \exp(-8000 K/T) C_D
}{
10 \exp(-300 K/T) C_A
+ 10^6 \exp(-8000 K/T) C_D
}
S D / U = r U 1 + r U 2 r D = 10 exp ( − 300 K / T ) C A + 1 0 6 exp ( − 8000 K / T ) C D 800 exp ( − 8000 K / T ) C A 0.5 − 1 0 6 exp ( − 8000 K / T ) C D
Selectivity is independent of concentration of B.
At 300 K: k 1 k_1 k 1 = 2.098e-09; k 2 k_2 k 2 = 3.679e+00; k 3 k_3 k 3 = 2.623e-06.
C A 0.5 ≫ C D C_A^{0.5} \gg C_D C A 0.5 ≫ C D : S D / U = k 1 / k 2 S_{D/U} = k_1/k_2 S D / U = k 1 / k 2 = 5.704e-10
C A 0.5 ∼ C D C_A^{0.5} \sim C_D C A 0.5 ∼ C D : S D / U = ( k 1 − k 3 ) / ( k 2 + k 3 ) S_{D/U} = (k_1 - k_3)/(k2 + k_3) S D / U = ( k 1 − k 3 ) / ( k 2 + k 3 ) = -7.125e-07
→ \rightarrow → Negative selectivity: C A 0.5 / C D C_A^{0.5}/ C_D C A 0.5 / C D must be maintained above 1.250e+03
At 1000 K: k 1 k_1 k 1 = 2.684e-01; k 2 k_2 k 2 = 7.408e+00; k 3 k_3 k 3 = 3.355e+02.
C A 0.5 ≫ C D C_A^{0.5} \gg C_D C A 0.5 ≫ C D : S D / U = k 1 / k 2 S_{D/U} = k_1/k_2 S D / U = k 1 / k 2 = 3.623e-02
C A 0.5 ∼ C D C_A^{0.5} \sim C_D C A 0.5 ∼ C D : S D / U = ( k 1 − k 3 ) / ( k 2 + k 3 ) S_{D/U} = (k_1 - k_3)/(k2 + k_3) S D / U = ( k 1 − k 3 ) / ( k 2 + k 3 ) = -9.776e-01
→ \rightarrow → Negative selectivity: C A 0.5 / C D C_A^{0.5}/ C_D C A 0.5 / C D must be maintained above 1.250e+03
At any condition, selectivity is very low.
Desired product can be obtained at high temperature and C A ≫ C D C_A \gg C_D C A ≫ C D , C A 0.5 / C D > C_A^{0.5}/ C_D > C A 0.5 / C D > 1.250e+03
Reactors:
Membrane : Remove D as it is formed
Reactive distillation