In class activity: Rate law and stoichiometry

Lecture notes for chemical reaction engineering

Author
Published

March 3, 2024

Modified

May 10, 2024

Relative rates

  1. For the reaction 2A+B3C\ce{2A + B -> 3C}, calculate rates of reaction of B and C if rA=10mol/(dm3s)-r_A = 10 mol/(dm^3 s)

    rAa=rBb=rCc \frac{r_A}{-a} = \frac{r_B}{-b} = \frac{r_C}{c}

    Rate of disappearance of B = rB=102-r_B = \frac{10}{2} = 5 mol/(dm3s)mol/(dm^3 s)

    Rate of production of C = rC=10×32r_C = \frac{10 \times 3}{2} = 15 mol/(dm3s)mol/(dm^3 s)

  2. NOX2\ce{NO2} is being formed at a rate of 4 mol/(m3s)mol/(m^3 s) in the reaction 2NO+OX22NOX2\ce{2NO + O2 <=> 2NO2}. Calculate the rate of consumption of NO\ce{NO}, and OX2\ce{O2}.

    rNO2=rO21=rNO22 \frac{r_{NO}}{-2} = \frac{r_{O_2}}{-1} = \frac{r_{NO_2}}{2}

    Rate of disappearance of NO\ce{NO} = rNO=4×22-r_{NO} = \frac{4 \times 2}{2} = 4 mol/(m3s)mol/(m^3 s)

    Rate of disappearance of OX2\ce{O2} = rO2=42-r_{O_2} = \frac{4}{2} = 2 mol/(m3s)mol/(m^3 s)

Rate law

Determine the rate law for the reaction described in each of the cases below involving species A, B, and C. The rate laws should be elementary as written for reactions that are either of the form AB\ce{A -> B} or A+BC\ce{A + B -> C}.

  1. The units of the specific reaction rate are k=[dm3mol h]k = \left[\frac{dm^3}{mol \ h} \right].
  2. The units of the specific reaction rate are k=[molkgcat h (atm)2]k = \left[\frac{mol}{kg-cat \ h \ (atm)^2} \right].
  3. The units of the specific reaction rate are k=[1h]k = \left[\frac{1}{h} \right].
  4. The units of a nonelementary reaction rate are k=[moldm3 h]k = \left[\frac{mol}{dm^3 \ h} \right].
  1. Second order reaction: rA=kCACB-r_A = kC_AC_B

  2. Second order gas phase reaction rA=kPAPB-r'_A = kP_AP_B

  3. First order reaction: rA=kCA-r_A = kC_A

  4. Second order non elementary reaction rA=kCA2-r_A = kC_A^2

Rate law for reversible reaction

For the reaction CX6HX6k-BkBCX6HX4+HX2(BD+HX2) \ce{C6H6 <=>[{k_B}][{k_{-B}}] C6H4 + H2} (\ce{B <=> D + H2})

determine the rate expression for disappearance of benzene (rB-r_B). Assume both the forward and reverse reactions are elementary.

We can write the reactions as two elementary reactions

BD+HX2(1);D+HX2B(2) \ce{B -> D + H2} \cdots (1); \qquad \ce{D + H2 -> B} \cdots (2)

Net rate rB=rB,1+rB,2 r_B = -r_{B,1} + r_{B,2}

rB=kBCBkBCDCH2 -r_B = k_B C_B - k_{-B} C_D C_{H_2}

K=kBkB K = \frac{k_B}{k_{-B}}

rB=kB(CBCDCH2K) \therefore -r_B = k_B \left( C_B - \frac{C_D C_{H_2}}{K} \right)

Calculate the activation energy

The decomposition of benzene diazonium chloride to give chlorobenzene and nitrogen

CX6HX5NX2ClCX6HX5Cl+NX2 \ce{C6H5N2Cl -> C6H5Cl + N2}

follows first order kinetics. The rate constant data at different temperatures is given in . Calculate the activation energy.

Table 1: Rate constant data
k(s1)k (s^{-1}) 0.00043 0.00103 0.00180 0.00355 0.00717
T(K)T (K) 313.0 319.0 323.0 328.0 333.0

k=AeERT k = A e^{\frac{-E}{RT}}

Linearize by taking log on both sides

lnk=lnA(ER)(1T) \ln k = \ln A - \left( \frac{E}{R} \right) \left( \frac{1}{T} \right)

The plot of ln(k)\ln(k) vs. 1/T1/T is linear with a slope of E/R-E/R

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import linregress

k = np.array([0.00043, 0.00103, 0.00180, 0.00355, 0.00717])
T = np.array([313.0, 319.0, 323.0, 328.0, 333.0])

R = 8.314 # J/mol K

ln_k = np.log(k)
inv_T = 1 / T

slope, intercept, r_value, p_value, std_err = linregress(inv_T, ln_k)
line = slope * inv_T + intercept

activation_energy = -slope*R/1000 # (kJ/mol)

# Plot 
plt.scatter(inv_T, ln_k, color='blue', label='Data points')
plt.plot(inv_T, line, color='red', label='Fit line')

# Labels and title
plt.xlabel('1/T (1/K)')
plt.ylabel('ln(k)')
plt.title('Linear Fit of ln(k) vs 1/T')
plt.legend()

slope_text = f'Slope: {slope:.5e}'
intercept_text = f'Intercept: {intercept:.5e}'
e_text = f'Activation Energy: {activation_energy:.2f} kJ/mol'
plt.annotate(f'{slope_text}\n{intercept_text}\n{e_text}', xy=(0.05, 0.20), xycoords='axes fraction', verticalalignment='top')

# Show plot
plt.show()

Calculate the equilibrium conversion for gas phase reaction, XeX_e

Consider the following elementary reaction with KCK_C = 20 dm3/moldm^3/mol and CA0C_{A0} = 0.2 mol/dm3mol/dm^3. Find XeX_e for both a batch reactor.

Reaction: 2AB\ce{2A <=> B}

Rate law: rA=kA[CA2CBKC]-r_A = k_A \left[ C_A^2 - \frac{C_B}{K_C} \right]

Rate law: rA=kA[CA2CBKC]-r_A = k_A \left[ C_A^2 - \frac{C_B}{K_C} \right]

At equilibrium rA0kA[CA2CBKC] -r_A \equiv 0 \equiv k_A \left[ C_A^2 - \frac{C_B}{K_C} \right]

Kc=CBeCAe2 K_c = \frac{C_{Be}}{C_{Ae}^2}

stoichiometry:

A12B \ce{A -> 1/2B}

Setting up stoichiometric table

Species Initial Change Remaining
A NA0N_{A0} NA0X-N_{A0}X NA=NA0(1X)N_A = N_{A0}(1 - X)
B 0 +NA0X/2+N_{A0}X/2 NB=NA0X/2N_B = N_{A0} X/2
Total NT0=NA0N_{T0} = N_{A0} NT=NA0NA0X/2N_T = N_{A0} - N_{A0}X/2

Constant Volume: V=V0V = V_0

CA=NAV=CA0(1X) C_A = \frac{N_A}{V} = C_{A0}(1-X)

CB=NBV=CA0X2 C_B = \frac{N_B}{V} = \frac{C_{A0}X}{2}

Kc=CBeCAe2=CA0Xe2CA02(1X)2 K_c = \frac{C_{Be}}{C_{Ae}^2} = \frac{C_{A0}\frac{X_e}{2}} {C_{A0}^2(1-X)^2}

2KcCA0=Xe(1X)2 2 K_c C_{A0}= \frac{X_e}{(1-X)^2}

2×20×0.2=Xe(1X)2;8Xe217Xe+8=0 2 \times 20 \times 0.2 = \frac{X_e}{(1-X)^2}; \qquad 8 X_e^2 - 17 X_e + 8 = 0

Solving:

Equilibrium conversion: Xe=0.7X_e = 0.7

Repeat the calculations above for a flow reactor

With the flow reactor, we will need to consider changes in molar flow rate as this is a gas phase reaction.

Rate law: rA=kA[CA2CBKC]-r_A = k_A \left[ C_A^2 - \frac{C_B}{K_C} \right]

At equilibrium rA0kA[CA2CBKC] -r_A \equiv 0 \equiv k_A \left[ C_A^2 - \frac{C_B}{K_C} \right]

Kc=CBeCAe2 K_c = \frac{C_{Be}}{C_{Ae}^2}

stoichiometry:

A12B \ce{A -> 1/2B}

Stoichiometric table is same as the batch system with moles replaced by molar flow rates.

Species Entering Change Exiting
A FA0F_{A0} FA0X-F_{A0}X FA=FA0(1X)F_A = F_{A0}(1 - X)
B 0 +FA0X/2+F_{A0}X/2 FB=FA0X/2F_B = F_{A0} X/2
Total FT0=FA0F_{T0} = F_{A0} FT=FA0FA0X/2F_T = F_{A0} - F_{A0}X/2

CAe=CA0(1Xe)(1+ϵXe) C_{Ae} = \frac{C_{A0}(1-X_e)}{(1 + \epsilon X_e)}

CBe=CA0Xe2(1+ϵXe) C_{Be} = \frac{C_{A0}X_e}{2(1 + \epsilon X_e)}

KC=CA0Xe2(1+ϵXe)[CA0(1Xe)(1+ϵXe)]2=Xe(1+ϵXe)2CA0(1Xe)2 K_{C} = \frac{\frac{C_{A0}X_{e}}{2(1+\epsilon X_{e})}} {\left[\frac{C_{A0}(1-X_{e})}{(1+\epsilon X_{e})}\right]^{2}} = \frac{X_{e}(1+\epsilon X_{e})} {2C_{A0}(1-X_{e})^{2}}

Kc=CBeCAe2=Xe(1+ϵXe)2CA0(1Xe)2 K_c = \frac{C_{Be}}{C_{Ae}^2} = \frac{X_e (1 + \epsilon X_e)}{2 C_{A0}(1-X_e)^2}

2KcCA0=Xe+ϵXe2)(12Xe+Xe2)=8 2 K_c C_{A0}= \frac{X_e + \epsilon X_e^2)}{(1-2 X_e + X_e^2)} = 8

ϵ=yA0δ=1(121)=12 \epsilon = y_{A0} \delta = 1 \left( \frac{1}{2} - 1 \right) = - \frac{1}{2}

8=Xe+0.5Xe2)(12Xe+Xe2) 8 = \frac{X_e + 0.5 X_e^2)}{(1-2 X_e + X_e^2)}

Solving for XeX_e:

Equilibrium conversion: Xe=0.757X_e = 0.757

Saponification reaction

The saponification for the formation of soap is:

3NaOH+(CX17HX35COO)X3CX3HX53CX17HX35COONa+CX3HX5(OH)X3 \ce{3NaOH + (C17H35COO)3C3H5 -> 3C17H35COONa + C3H5(OH)3}

Letting X represent the conversion of NaOH set up a stoichiometric table expressing the concentration of each species in terms of the initial concentration of NaOH and the conversion of X.

3NaOH+(CX17HX35COO)X3CX3HX53CX17HX35COONa+CX3HX5(OH)X3 \ce{3NaOH + (C17H35COO)3C3H5 -> 3C17H35COONa + C3H5(OH)3}

A+13BC+13D \ce{A + 1/3 B -> C + 1/3 D}

CA=NAV=NAV0=NA0(1X)=CA0(1X) C_A = \frac{N_A}{V} = \frac{N_A}{V_0} = N_{A0}(1 - X) = C_{A0}(1 - X)

ΘB=CB0CA0,ΘC=CC0CA0,ΘD=CD0CA0 \Theta_B = \frac{C_{B0}}{C_{A0}}, \quad \Theta_C = \frac{C_{C0}}{C_{A0}}, \quad \Theta_D = \frac{C_{D0}}{C_{A0}}

Species Symbol Initially Change Remaining Concentration
NaOH A NA0 N_{A0} NA0X -N_{A0}X NA0(1X) N_{A0}(1 - X) CA0(1X) C_{A0}(1 - X)
(C17H35COO)3C3H5 (C_{17}H_{35}COO)_3C_3H_5 B NB0 N_{B0} 13NA0X -\frac{1}{3}N_{A0}X NA0(ΘBX3) N_{A0}\left(\Theta_B - \frac{X}{3}\right) CA0(ΘBX3) C_{A0}\left(\Theta_B - \frac{X}{3}\right)
C17H35COONa C_{17}H_{35}COONa C NC0 N_{C0} NA0X N_{A0}X NA0(ΘC+X) N_{A0}(\Theta_C + X) CA0(ΘC+X) C_{A0}(\Theta_C + X)
C3H5(OH)3 C_3H_5(OH)_3 D ND0 N_{D0} 13NA0X \frac{1}{3}N_{A0}X NA0(ΘD+X3) N_{A0}\left(\Theta_D + \frac{X}{3}\right) CA0(ΘD+X3) C_{A0}\left(\Theta_D + \frac{X}{3}\right)
Water (inert) I NI0 N_{I0} NI0 N_{I0} CI0 C_{I0}
Totals NT0 N_{T0} 0 NT=NT0 N_T = N_{T0}

Determining Cj=hj(X)C_j = h_j(X) for a Gas-Phase Reaction

A mixture Of 28% SOX2\ce{SO2} and 72% air is charged to a flow reactor in which SOX2\ce{SO2} is oxidized.

2SOX2+OX22SOX3 \ce{2SO2 + O2 -> 2 SO3}

  1. First, set up a stoichiometric table using only the symbols (i.e., Θi,Fi\Theta_i, F_i).

  2. Next, prepare a second table evaluating the species concentrations as a function of conversion for the case when the total pressure is 1485 kPa (14.7 atm) and the temperature is constant at 227 °C.

  3. Evaluate the parameters and make a plot of each of the concentrations SOX2\ce{SO2}, SOX3\ce{SO3}, NX2\ce{N2} as a function of conversion

2SOX2+OX22SOX3 \ce{2SO2 + O2 -> 2 SO3}

Take SOX2\ce{SO2} as basis of calculation

SOX2+12OX2SOX3 \ce{SO2 + 1/2 O2 -> SO3}

Stoichiometric table

Species Symbol Entering Change Leaving
SO2SO_2 A FA0 F_{A0} FA0X -F_{A0}X FA=FA0(1X) F_A = F_{A0}(1 - X)
O2O_2 B FB0=ΘBFA0 F_{B0} = \Theta_B F_{A0} FA0X2 -\frac{F_{A0}X}{2} FB=FA0(ΘB12X) F_B = F_{A0}\left(\Theta_B - \frac{1}{2}X\right)
SO3SO_3 C 0 +FA0X +F_{A0}X FC=FA0X F_C = F_{A0}X
N2N_2 I FI0=ΘIFA0 F_{I0} = \Theta_I F_{A0} FI=FI0=ΘIFA0 F_I = F_{I0} = \Theta_I F_{A0}
Totals FT0 F_{T0} FA0X2 -\frac{F_{A0}X}{2} FT=FT0FA0X2 F_T = F_{T0} - \frac{F_{A0}X}{2}

Concentration:

CA=FAυ=FA0(1X)υ C_A = \frac{F_A}{\upsilon} = \frac{F_{A0}(1 - X)}{\upsilon}

volumetric flow rate:

υ=υ0(1+ϵX)(P0P)(TT0) \upsilon = \upsilon_0(1 + \epsilon X) \left( \frac{P_0}{P} \right) \left( \frac{T}{T_0} \right)

Neglecting pressure drop in the reaction, and for isothermal reactions:

υ=υ0(1+ϵX) \upsilon = \upsilon_0(1 + \epsilon X)

CA=FA0(1X)υ0(1+ϵX)=CA01X1+ϵX C_A = \frac{F_{A0}(1 - X)}{\upsilon_0(1 + \epsilon X)} = C_{A0} \frac{1 - X}{1 + \epsilon X}

Similarly for B

CB=CA0(ΘBbaX)1+ϵX=CA0(ΘB12X)1+ϵX C_B = C_{A0} \frac{\left( \Theta_B - \frac{b}{a}X \right)}{1 + \epsilon X} = \frac{C_{A0}\left(\Theta_B - \frac{1}{2}X\right)}{1 + \epsilon X}

CT=CT0=P0RT0=14858.314×500=0.357moldm3 C_T = C_{T0} = \frac{P_0}{RT_0} = \frac{1485}{8.314 \times 500} = 0.357 \frac{mol}{dm^3}

ϵ=yA0δ=0.28×(1112)=0.14 \epsilon = y_{A0} \delta = 0.28 \times ( 1 - 1 - \frac{1}{2}) = -0.14

Initially, 72% of the total number of moles is air containing 21% OX2\ce{O2} and 79% NX2\ce{N2}, along with 28% SOX2\ce{SO2}.

FA0=(0.28)(FT0) F_{A0} = (0.28)(F_{T0})

FB0=(0.72)(0.21)(FT0) F_{B0} = (0.72)(0.21)(F_{T0})

ΘB=FB0FA0=(0.72)(0.21)0.28=0.54 \Theta_B = \frac{F_{B0}}{F_{A0}} = \frac{(0.72)(0.21)}{0.28} = 0.54

Θ1=FI0FA0=(0.72)(0.79)0.28=2.03 \Theta_1 = \frac{F_{I0}}{F_{A0}} = \frac{(0.72)(0.79)}{0.28} = 2.03

Substituting for CA0C_{A0} and ϵ\epsilon in the species concentrations:

SO2:CA=CA0(1X1+ϵX)=0.1(1X10.14X)mol/dm3 SO_{2}: \quad C_A = C_{A0} \left( \frac{1 - X}{1 + \epsilon X} \right) = 0.1 \left( \frac{1 - X}{1 - 0.14X} \right) \quad \text{mol/dm}^3

O2:CB=CA0(ΘB12X1+ϵX)=0.1(0.540.5X10.14X)mol/dm3 O_2: \quad C_B = C_{A0} \left( \frac{\Theta_B - \frac{1}{2}X}{1 + \epsilon X} \right) = 0.1 \left( \frac{0.54 - 0.5X}{1 - 0.14X} \right) \quad \text{mol/dm}^3

SO3:CC=CA0X1+ϵX=0.1X10.14Xmol/dm3 SO_3: \quad C_C = \frac{C_{A0}X}{1 + \epsilon X} = \frac{0.1X}{1 - 0.14X} \quad \text{mol/dm}^3

N2:CI=CA0Θ11+ϵX=(0.1)(2.03)10.14Xmol/dm3 N_2: \quad C_I = \frac{C_{A0}\Theta_1}{1 + \epsilon X} = \frac{(0.1)(2.03)}{1 - 0.14X} \quad \text{mol/dm}^3

import numpy as np
import matplotlib.pyplot as plt

# Constants
C_A0 = 0.1  # mol/dm^3
epsilon = -0.14  # unitless
Theta_B = 0.54  # unitless
Theta_I = 2.03  # unitless

# Conversion range from 0 to 1 with 0.25 interval
X_values = np.arange(0, 1.01, 0.25)

# Concentration calculations
def calculate_concentrations(X, C_A0, epsilon, Theta_B, Theta_I):
    C_A = C_A0 * ((1 - X)/(1 - epsilon * X))
    C_B = C_A0 * ((Theta_B - 0.5 * X) / (1 + epsilon * X))
    C_C = C_A0 * X / (1 + epsilon * X)
    C_I = C_A0 * Theta_I / (1 + epsilon * X)
    return C_A, C_B, C_C, C_I

# Calculate concentrations for each X value
C_A_values, C_B_values, C_C_values, C_I_values = [], [], [], []
for X in X_values:
    C_A, C_B, C_C, C_I = calculate_concentrations(X, C_A0, epsilon, Theta_B, Theta_I)
    C_A_values.append(C_A)
    C_B_values.append(C_B)
    C_C_values.append(C_C)
    C_I_values.append(C_I)

# Plotting the results
plt.plot(X_values, C_A_values, marker='o', label=r'$C_A$')
plt.plot(X_values, C_B_values, marker='o', label=r'$C_B$')
plt.plot(X_values, C_C_values, marker='s', label=r'$C_C$')
plt.plot(X_values, C_I_values, marker='^', label=r'$C_I$')

plt.xlabel('Conversion, $X$')
plt.ylabel('Concentration ($mol/dm^3$)')
plt.title('Concentration as a Function of Conversion')
plt.legend()
plt.grid(True)
plt.show()

Note that Concentration of N2N_2 (C_I)$ changes with conversion even though nitrogen does not participate in the reaction.

Liquid phase first order reaction

Orthonitroanaline (an important intermediate in dyes—called fast orange) is formed from the reaction of orthonitrochlorobenzene (ONCB) and aqueous ammonia. The liquid-phase reaction is first order in both ONCB and ammonia with k=0.0017 m3/kmolmink = 0.0017 \ m^3 /kmol \cdot min at 188 C188 \ ^{\circ}C with E=11273 cal/molE = 11273 \ cal/mol. The initial entering concentrations of ONCB and ammonia are 1.8 kmol/m31.8 \ kmol/m^3 and 6.6 kmol/m36.6 \ kmol/m^3, respectively.

CX6HX4ClNOX2+2NHX3CX6HX6NX2OX2+NHX4Cl \ce{C6H4ClNO2 + 2 NH3 -> C6H6N2O2 + NH4Cl}

  1. Set up a stoichiometric table for this reaction for a flow system.

  2. Write the rate law for the rate of disappearance of ONCB in terms of concentration.

  3. Explain how parts (a) and (b) would be different for a batch system.

  4. Write rA-r_A solely as a function of conversion. rA-r_A = ______

  5. What is the initial rate of reaction (X = 0)

    at 188 C188 \ ^{\circ}C? rA-r_A = ______

    at 25 C25 \ ^{\circ}C? rA-r_A = ______

    at 288 C288 \ ^{\circ}C? rA-r_A = ______

  6. What is the rate of reaction when X = 0.90

    at 188 C188 \ ^{\circ}C? rA-r_A = ______

    at 25 C25 \ ^{\circ}C? rA-r_A = ______

    at 288 C288 \ ^{\circ}C? rA-r_A = ______

  7. What would be the corresponding CSTR reactor volume at 25 C25 \ ^{\circ}C to achieve 90% conversion and at 288 C288 \ ^{\circ}C for a feed rate of 2 dm3/min2 \ dm^3 /min

    at 25 C25 \ ^{\circ}C? V = ______

    at 288 C288 \ ^{\circ}C? V = ______

CX6HX4ClNOX2+2NHX3CX6HX6NX2OX2+NHX4Cl \ce{C6H4ClNO2 + 2 NH3 -> C6H6N2O2 + NH4Cl}

A+2BC+D;rA=kCACB \ce{A + 2 B -> C + D}; -r_A = k C_A C_B

Problem data
k 0.0017 m3/kmolminm^3/kmol min at 188Cat \ 188 ^\circ C
E 11273 cal/molcal/mol
$C_A 1.8 kmol/m3kmol/m^3
$C_B 6.6 kmol/m3kmol/m^3
  1. Stoichiometric table for flow reactor
Species Entering Change Exiting
A FA0F_{A0} FA0X-F_{A0}X FA=FA0(1X)F_A = F_{A0}(1 - X)
B FB0=ΘBFA0F_{B0} = \Theta_B F_{A0} 2FA0X-2 F_{A0}X FB=FA0(ΘB2X)F_B = F_{A0}(\Theta_B - 2X)
C 0 FA0XF_{A0}X FC=FA0XF_C = F_{A0} X
D 0 FA0XF_{A0}X FD=FA0XF_D = F_{A0} X

ΘB=6.61.8=3.67\Theta_B = \frac{6.6}{1.8} = 3.67

  1. rA=kCACB-r_A = k C_A C_B

  2. For batch system

CA=NAV C_A = \frac{N_A}{V}

The stoichiometric table needs to be set up in terms of N instead of F. The reaction rate expression would remain same.

  1. rA-r_A as a function of conversion

rA=kCACB-r_A = k C_A C_B

CA=CA0(1X)C_A = C_{A0}(1-X)

CB=CA0(ΘB2X)C_B = C_{A0}(\Theta_B - 2X)

rA=kCA0(1X)CA0(ΘB2X)-r_A = k C_{A0}(1-X) C_{A0}(\Theta_B - 2X)

rA=kCA02(1X)(ΘB2X)-r_A = k C_{A0}^2 (1-X)(\Theta_B - 2X)

  1. Initial rates of reaction

k at different temperatures

k=k0exp[ER(1T01T)] k = k_0 exp \left[ \frac{E}{R} \left( \frac{1}{T_0} - \frac{1}{T} \right)\right]

T (°C) k (m3/kmolmin)(m^3/kmol min)
25 (298K) 2.03×1062.03 \times 10^{-6}
188 (461K) 0.0017
288 (561K) 0.152
  1. At 188 °C

rA=kCA02ΘB=0.0017×(1.8)2×3.67=0.0202 kmol/m3min-r_A = k C_{A0}^2 \Theta_B = 0.0017 \times (1.8)^2 \times 3.67 = 0.0202 \ kmol/m^3 min

  1. At 25 °C: 2.41×105 kmol/m3min2.41 \times 10^{-5} \ kmol/m^3 min

  2. At 288 °C: 0.1806 kmol/m3minkmol/m^3 min

  1. rates of reaction at X=0.9X = 0.9

rA=kCA02(1X)(ΘB2X)-r_A = k C_{A0}^2 (1 - X)(\Theta_B - 2X)

  1. At 188 °C: 0.00103 kmol/m3minkmol/m^3 min

  2. At 25 °C: 1.23×1061.23 \times 10^{-6} kmol/m3minkmol/m^3 min

  3. At 288 °C: 0.0092 kmol/m3minkmol/m^3 min

  1. CSTR Volume

X=90X = 90% = 0.9; \upsilon_0 = 2 dm^3/min

FA0=CA0υ0=3.6mol/minF_{A0} = C_{A0} \upsilon_0 = 3.6 mol/min

  1. V at 25 °C

    V=FA0XrAexit V = \frac{F_{A0}X}{-r_A|_{exit}}

    V = 2634.1 m3m^3

  2. V at 288 °C: 352 m3m^3

Citation

BibTeX citation:
@online{utikar2024,
  author = {Utikar, Ranjeet},
  title = {In Class Activity: {Rate} Law and Stoichiometry},
  date = {2024-03-03},
  url = {https://cre.smilelab.dev/content/notes/03-rate-law-and-stoichiometry/in-class-activities.html},
  langid = {en}
}
For attribution, please cite this work as:
Utikar, Ranjeet. 2024. “In Class Activity: Rate Law and Stoichiometry.” March 3, 2024. https://cre.smilelab.dev/content/notes/03-rate-law-and-stoichiometry/in-class-activities.html.