Workshop 11: Distribution of residence time

Lecture notes for chemical reaction engineering

Ranjeet Utikar

2024-03-24

Try following problems from Fogler 5e (Fogler (2016)) P 16-3, P 16-6, P 16-11 We will go through some of these problems in the workshop.

P 16-3

Consider the E(t) curve below.

Mathematically this hemi circle is described by these equations:

For
$$2\tau>=t>=0$$
, then $E(t)=\sqrt{\tau^2-(t-\tau)^2}$ min ^-1 (hemi circle) For $t>2\tau$, then $E(t)=0$

- (a) What is the mean residence time?
- (b) What is the variance?

P 16-6

An RTD experiment was carried out in a nonideal reactor that gave the following results:

$$\begin{array}{lll} \hline E(t) = 0 & \text{for} & t < 1 \, min \\ E(t) = 1.0 \, min^{-1} & \text{for} & 1 <= t <= 2 \, min \\ E(t) = 0 & \text{for} & t > 2 \, min \\ \hline \end{array}$$

1

(a) What are the mean residence time, t_m , and variance σ^2 ?

- (b) What is the fraction of the fluid that spends a time 1.5 minutes or longer in the reactor?
- (c) What fraction of fluid spends 2 minutes or less in the reactor?
- (d) What fraction of fluid spends between 1.5 and 2 minutes in the reactor?

P 16-11

The volumetric flow rate through a reactor is 10 dm³/min. A pulse test gave the following concentration measurements at the outlet:

t (min)	$c \times 10^5$	t (min)	$c \times 10^5$
0	0	15	238
0.4	329	20	136
1.0	622	25	77
2	812	30	44
3	831	35	25
4	785	40	14
5	720	45	8
6	650	50	5
8	523	60	1
10	418		

- (a) Plot the external-age distribution E(t) as a function of time.
- (b) Plot the external-age cumulative distribution F(t) as a function of time.
- (c) What are the mean residence time t_m and the variance, σ^2 ?
- (d) What fraction of the material spends between 2 and 4 minutes in the reactor?
- (e) What fraction of the material spends longer than 6 minutes in the reactor?
- (f) What fraction of the material spends less than 3 minutes in the reactor?
- (g) Plot the normalized distributions $E(\Phi)$ and $F(\Phi)$ as a function of (Φ) .
- (h) What is the reactor volume?
- (i) Plot the internal-age distribution I(t) as a function of time.
- (j) What is the mean internal age α_m ?

References

Fogler, H. Scott. 2016. Elements of Chemical Reaction Engineering. Fifth edition. Boston: Prentice Hall.