Workshop 11: Distribution of residence time

Lecture notes for chemical reaction engineering

Ranjeet Utikar

2024-03-24

Try following problems from Fogler 5e (Fogler (2016)) P 16-3, P 16-6, P 16-11
We will go through some of these problems in the workshop.

P 16-3

Consider the $E(t)$ curve below.

Mathematically this hemi circle is described by these equations:
For $2 \tau>=t>=0$, then $E(t)=\sqrt{\tau^{2}-(t-\tau)^{2}} \min ^{-1}$ (hemi circle)
For $t>2 \tau$, then $E(t)=0$
(a) What is the mean residence time?
(b) What is the variance?

P 16-6

An RTD experiment was carried out in a nonideal reactor that gave the following results:

$E(t)=0$	for	$t<1 \mathrm{~min}$
$E(t)=1.0 \mathrm{~min}^{-1}$	for	$1<=t<=2 \mathrm{~min}$
$E(t)=0$	for	$t>2 \mathrm{~min}$

(a) What are the mean residence time, t_{m}, and variance σ^{2} ?
(b) What is the fraction of the fluid that spends a time 1.5 minutes or longer in the reactor?
(c) What fraction of fluid spends 2 minutes or less in the reactor?
(d) What fraction of fluid spends between 1.5 and 2 minutes in the reactor?

P 16-11

The volumetric flow rate through a reactor is $10 \mathrm{dm}^{3} / \mathrm{min}$. A pulse test gave the following concentration measurements at the outlet:

$\mathrm{t}(\mathrm{min})$	$c \times 10^{5}$	$\mathrm{t}(\mathrm{min})$	$c \times 10^{5}$
0	0	15	238
0.4	329	20	136
1.0	622	25	77
2	812	30	44
3	831	35	25
4	785	40	14
5	720	45	8
6	650	50	5
8	523	60	1
10	418		

(a) Plot the external-age distribution $E(t)$ as a function of time.
(b) Plot the external-age cumulative distribution $F(t)$ as a function of time.
(c) What are the mean residence time t_{m} and the variance, σ^{2} ?
(d) What fraction of the material spends between 2 and 4 minutes in the reactor?
(e) What fraction of the material spends longer than 6 minutes in the reactor?
(f) What fraction of the material spends less than 3 minutes in the reactor?
(g) Plot the normalized distributions $E(\Phi)$ and $F(\Phi)$ as a function of (Φ).
(h) What is the reactor volume?
(i) Plot the internal-age distribution $I(t)$ as a function of time.
(j) What is the mean internal age α_{m} ?

References

Fogler, H. Scott. 2016. Elements of Chemical Reaction Engineering. Fifth edition. Boston: Prentice Hall.

