Workshop 09: External and internal diffusion effects

Lecture notes for chemical reaction engineering

Ranjeet Utikar

2024-03-24

P 14-9

The irreversible gas-phase reaction

$A \xrightarrow[]{cat} B$

is carried out adiabatically over a packed bed of solid catalyst particles. The reaction is first order in the concentration of A on the catalyst surface

$$-r'_{As} = k'C_{As}$$

The feed consists of 50% (mole) A and 50% inerts, and enters the bed at a temperature of 300 K. The entering volumetric flow rate is 10 dm³/s (i.e., 10,000 cm³/s). The relationship between the Sherwood number and the Reynolds number is

 $Sh = 100 Re^{1/2}$

As a first approximation, one may neglect pressure drop. The entering concentration of A is 1.0 M. Calculate the catalyst weight necessary to achieve 60% conversion of A for

- (a) isothermal operation.
- (b) adiabatic operation.

Additional information:

- Kinematic viscosity: $\mu/
 ho=0.02cm^2/s$
- Particle diameter: $d_p = 0.1cm$
- Superficial velocity: U = 10 cm/s
- Catalyst surface area/mass of catalyst bed: $a=60 cm^2/g-cat$
- Diffusivity of A: $D_e = 10^{-2} cm^2/s$
- + Heat of reaction: $\Delta H_{Rx}^{\circ}=10,000 cal/gmolA$
- Heat capacities: $C_{pA} = C_{pB} = 25cal/gmol \cdot K, C_{pS}$ (solvent) = $75cal/gmol \cdot K$
- $k'(300K) = 0.01 cm^3/s \cdot g cat$ with E = 4000 cal/mol