Workshop 07: Non-isothermal reactor design

Lecture notes for chemical reaction engineering

Ranjeet Utikar

2024-04-02

Try following problems from Fogler 5e P 11-5, P 11-6, P 12-6, P 12-21

We will go through some of these problems in the workshop.

P 11-5

The elementary, irreversible gas-phase reaction

 $A \longrightarrow B + C$

is carried out adiabatically in a PFR packed with a catalyst. Pure A enters the reactor at a volumetric flow rate of 20 dm^3/s , at a pressure of 10 atm, and a temperature of 450 K.

Additional information:

$$\begin{split} C_{P_A} &= 40J/mol\cdot K; C_{P_B} = 25J/mol\cdot K; C_{P_C} = 15J/mol\cdot K; \\ H_A^\circ &= -70kJ/mol; H_B^\circ = -50kJ/mol; H_C^\circ = -40kJ/mol \end{split}$$

All heats of formation are referenced to 273 K.

$$k = 0.133 \exp\left[\frac{E}{R}\left(\frac{1}{450} - \frac{1}{T}\right)\right] \ \frac{dm^3}{kg - cat \cdot s} \text{ with } E = 31.4kJ/mol$$

- (a) Plot and then analyze the conversion and temperature down the plug-flow reactor until an 80% conversion (if possible) is reached. (The maximum catalyst weight that can be packed into the PFR is 50 kg.) Assume that $\Delta P = 0.0$.
- (b) Vary the inlet temperature and describe what you find.
- (c) Plot the heat that must be removed along the reactor (Q vs. V) to maintain isothermal operation.
- (d) Now take the pressure drop into account in the PBR with $\rho_b = 1kg/dm^3$. The reactor can be packed with one of two particle sizes. Choose one.

$$\label{eq:alpha} \begin{split} \alpha &= 0.019/kg - cat \text{ for particle diameter } D_1 \\ \alpha &= 0.0075/kg - cat \text{ for particle diameter } D_2 \end{split}$$

(e) Plot and then analyze the temperature, conversion, and pressure along the length of the reactor. Vary the parameters α and P_0 to learn the ranges of values in which they dramatically affect the conversion.

P 11-6

The irreversible endothermic vapor-phase reaction follows an elementary rate law

 $CHECOCH_3 \longrightarrow CH_2CO + CH_4$

 $A \longrightarrow B + C$

and is carried out adiabatically in a 500-dm³ PFR. Species A is fed to the reactor at a rate of 10 mol/min and a pressure of 2 atm. An inert stream is also fed to the reactor at 2 atm, as shown in Figure P11-6 B. The entrance temperature of both streams is 1100 K.

Figure P11-6 $_{\rm B}$ Adiabatic PFR with inerts.

Additional information:

$$\begin{split} k &= \exp(34.34 - 34222/T) dm^3/mol \cdot min \text{ (T in degrees Kelvin); } C_{P_l} = 200J/mol \cdot K \\ C_{P_A} &= 170J/mol \cdot K \text{; } C_{P_B} = 90J/mol \cdot K \text{; } C_{P_C} = 80J/mol \cdot K \text{; } \Delta H_{Rx}^\circ = 80000J/mol \cdot K \text{; } L_{P_C} = 8000J/mol \cdot K \text{; } L_{P_C} = 8000J/mol \cdot K \text{; } L_{P_C} = 8000J/mol \cdot K \text{; } L_{P_C} = 800J/mol \cdot K \text{; } L_{P_C} = 8000J/mol \cdot K \text{; } L_{P_C} = 800J/mol \cdot K \text{; } L_{P_C} = 80J/mol \cdot K \text{; } L_{P_C} = 800J/mol \cdot K \text{; } L_{P_C} = 80J/mol \cdot K \text{; } L$$

- (a) First derive an expression for C_{A01} as a function of C_{A0} and Φ_I .
- (b) Sketch the conversion and temperature profiles for the case when no inerts are present. Using a dashed line, sketch the profiles when a moderate amount of inerts are added. Using a dotted line, sketch the profiles when a large amount of inerts are added. Qualitative sketches are fine. Describe the similarities and differences between the curves.
- (c) Sketch or plot and then analyze the exit conversion as a function of Φ_I . Is there a ratio of the entering molar flow rates of inerts (I) to A (i.e., $\Phi_I = F_{I0}/F_{A0}$ at which the conversion is at a maximum? Explain why there "is" or "is not" a maximum.
- (d) What would change in parts (b) and (c) if reactions were exothermic and reversible with $\Delta H_{Rx}^{\circ} = -80 kJ/mol$ and $K_C = 2 dm^3/mol$ at 1100 K?
- (e) Sketch or plot F_B for parts (c) and (d), and describe what you find.
- (f) Plot the heat that must be removed along the reactor (Q vs. V) to maintain isothermal operation for pure A fed and an exothermic reaction.

P 12-6

The endothermic liquid-phase elementary reaction

 $A + B \longrightarrow 2 C$

proceeds, substantially, to completion in a single steam-jacketed, continuous-stirred reactor (Table P12-6 B). From the following data, calculate the steady-state reactor temperature:

Reactor volume: 125 gal;

Steam jacket area: 10 ft²

Jacket steam: 150 psig (365.9 °F saturation temperature)

Overall heat-transfer coefficient of jacket, U: 150 $Btu/h \cdot ft^2 \cdot^{\circ} F$

Agitator shaft horsepower: 25 hp

Heat of reaction, $\Delta H_{Rx}^{\circ} = +20000$ Btu/lb-mol of A (independent of temperature)

	Component		
	A	В	С
Feed (lb-mol/hr)	10.0	10.0	0
Feed temperature (°F)	80	80	_
Specific heat (Btu/lb-mol · °F)*	51.0	44.0	47.5
Molecular weight	128	94	111
Density (lb_m/ft^3)	63.0	67.2	65.0

TABLE P12-6_B FEED CONDITIONS AND PROPERTIES

* Independent of temperature. (Ans.: $T = 199^{\circ}$ F)

(Courtesy of the California Board of Registration for Professional & Land Surveyors.)

P 12-21

The irreversible liquid-phase reactions

 $\begin{array}{ll} \mbox{Reaction 1: } \mathbf{A} + \mathbf{B} \longrightarrow 2\, \mathbf{C} & r_{1C} = k_{1C} C_A C_B \\ \mbox{Reaction 2: } 2\, \mathbf{B} + \mathbf{C} \longrightarrow \mathbf{D} & r_{2D} = k_{2D} C_B C_C \\ \end{array}$

are carried out in a PFR with heat exchange. The following temperature profiles were obtained for the reactor and the coolant stream:

Figure P12-21_B Reactant temperature T and coolant temperature T_a profiles.

The concentrations of A, B, C, and D were measured at the point down the reactor where the liquid temperature, T, reached a maximum, and they were found to be $C_A = 0.1$, $C_B = 0.2$, $C_C = 0.5$, and $C_D = 1.5$, all in mol/dm³. The product of the overall heat-transfer coefficient and the heat-exchanger area per unit volume, Ua, is 10 $cal/s \cdot dm^3 \cdot K$. The entering molar flow rate of A is 10 mol/s.

Additional information

$$\begin{split} C_{P_A} &= C_{P_B} = C_{P_C} = 30 \ cal/mol/K \qquad C_{P_D} = 90 \ cal/mol/K, \qquad C_{P_I} = 100 \ cal/mol/K \\ \Delta H^\circ_{Rx1A} &= +5000 \ cal/molA; \qquad k_{1C} = 0.043 (dm^3/mol \cdot s) \ \text{at 400 K} \\ \Delta H^\circ_{Rx2B} &= +5000 \ cal/molB; \qquad k_{2D} = 0.4 (dm^3/mol \cdot s) \ \text{exp } 5000 K \left[\frac{1}{500} - \frac{1}{T}\right] \end{split}$$

(a) What is the activation energy for Reaction (1)?