Workshop 07: Non-isothermal reactor design

Lecture notes for chemical reaction engineering

Ranjeet Utikar

> 2024-04-02

Try following problems from Fogler 5e P 11-5, P 11-6, P 12-6, P 12-21
We will go through some of these problems in the workshop.

P 11-5

The elementary, irreversible gas-phase reaction
$\mathrm{A} \longrightarrow \mathrm{B}+\mathrm{C}$
is carried out adiabatically in a PFR packed with a catalyst. Pure A enters the reactor at a volumetric flow rate of $20 \mathrm{dm}^{3} / \mathrm{s}$, at a pressure of 10 atm , and a temperature of 450 K .

Additional information:
$C_{P_{A}}=40 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K} ; C_{P_{B}}=25 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K} ; C_{P_{C}}=15 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
$H_{A}^{\circ}=-70 \mathrm{~kJ} / \mathrm{mol} ; H_{B}^{\circ}=-50 \mathrm{~kJ} / \mathrm{mol} ; H_{C}^{\circ}=-40 \mathrm{~kJ} / \mathrm{mol}$
All heats of formation are referenced to 273 K .

$$
k=0.133 \exp \left[\frac{E}{R}\left(\frac{1}{450}-\frac{1}{T}\right)\right] \frac{d m^{3}}{\mathrm{~kg}-\mathrm{cat} \cdot \mathrm{~s}} \text { with } E=31.4 \mathrm{~kJ} / \mathrm{mol}
$$

(a) Plot and then analyze the conversion and temperature down the plug-flow reactor until an 80% conversion (if possible) is reached. (The maximum catalyst weight that can be packed into the PFR is 50 kg .) Assume that $\Delta P=0.0$.
(b) Vary the inlet temperature and describe what you find.
(c) Plot the heat that must be removed along the reactor ($\mathrm{Q} v . \mathrm{V} . \mathrm{V}$) to maintain isothermal operation.
(d) Now take the pressure drop into account in the PBR with $\rho_{b}=1 \mathrm{~kg} / \mathrm{dm}^{3}$. The reactor can be packed with one of two particle sizes. Choose one.

$$
\begin{gathered}
\alpha=0.019 / \mathrm{kg}-\mathrm{cat} \text { for particle diameter } D_{1} \\
\alpha=0.0075 / \mathrm{kg}-\mathrm{cat} \text { for particle diameter } D_{2}
\end{gathered}
$$

(e) Plot and then analyze the temperature, conversion, and pressure along the length of the reactor. Vary the parameters α and P_{0} to learn the ranges of values in which they dramatically affect the conversion.

P 11-6

The irreversible endothermic vapor-phase reaction follows an elementary rate law
$\mathrm{CHECOCH}_{3} \longrightarrow \mathrm{CH}_{2} \mathrm{CO}+\mathrm{CH}_{4}$
$\mathrm{A} \longrightarrow \mathrm{B}+\mathrm{C}$
and is carried out adiabatically in a $500-\mathrm{dm}^{3} \mathrm{PFR}$. Species A is fed to the reactor at a rate of $10 \mathrm{~mol} / \mathrm{min}$ and a pressure of 2 atm . An inert stream is also fed to the reactor at 2 atm , as shown in Figure P11-6 B. The entrance temperature of both streams is 1100 K .

Figure P11-6 B $_{B}$ Adiabatic PFR with inerts.

Additional information:
$k=\exp (34.34-34222 / T) d \mathrm{~m}^{3} / \mathrm{mol} \cdot \min \left(\mathrm{T}\right.$ in degrees Kelvin); $C_{P_{l}}=200 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
$C_{P_{A}}=170 \mathrm{~J} / \mathrm{mol} \cdot K ; C_{P_{B}}=90 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K} ; C_{P_{C}}=80 \mathrm{~J} / \mathrm{mol} \cdot K ; \Delta H_{R x}^{\circ}=80000 \mathrm{~J} / \mathrm{mol}$
(a) First derive an expression for $C_{A 01}$ as a function of $C_{A 0}$ and Φ_{I}.
(b) Sketch the conversion and temperature profiles for the case when no inerts are present. Using a dashed line, sketch the profiles when a moderate amount of inerts are added. Using a dotted line, sketch the profiles when a large amount of inerts are added. Qualitative sketches are fine. Describe the similarities and differences between the curves.
(c) Sketch or plot and then analyze the exit conversion as a function of Φ_{I}. Is there a ratio of the entering molar flow rates of inerts (I) to A (i.e., $\Phi_{I}=F_{I 0} / F_{A 0}$ at which the conversion is at a maximum? Explain why there "is" or "is not" a maximum.
(d) What would change in parts (b) and (c) if reactions were exothermic and reversible with $\Delta H_{R x}^{\circ}=-80 \mathrm{~kJ} / \mathrm{mol}$ and $K_{C}=2 d \mathrm{~m}^{3} / \mathrm{mol}$ at 1100 K ?
(e) Sketch or plot F_{B} for parts (c) and (d), and describe what you find.
(f) Plot the heat that must be removed along the reactor (Q vs. V) to maintain isothermal operation for pure A fed and an exothermic reaction.

P 12-6

The endothermic liquid-phase elementary reaction
$\mathrm{A}+\mathrm{B} \longrightarrow 2 \mathrm{C}$
proceeds, substantially, to completion in a single steam-jacketed, continuous-stirred reactor (Table P12-6 B). From the following data, calculate the steady-state reactor temperature:
Reactor volume: 125 gal;
Steam jacket area: $10 \mathrm{ft}^{2}$
Jacket steam: $150 \mathrm{psig}\left(365.9^{\circ} \mathrm{F}\right.$ saturation temperature)
Overall heat-transfer coefficient of jacket, U: $150 \mathrm{Btu} / \mathrm{h} \cdot f t^{2}{ }^{\circ} \mathrm{F}$
Agitator shaft horsepower: 25 hp
Heat of reaction, $\Delta H_{R x}^{\circ}=+20000 \mathrm{Btu} / \mathrm{lb}-\mathrm{mol}$ of A (independent of temperature)
Table P12-6 Feed Conditions and Properties

	Component		
	A	B	C
Feed $(\mathrm{lb}-\mathrm{mol} / \mathrm{hr})$	10.0	10.0	0
Feed temperature $\left({ }^{\circ} \mathrm{F}\right)$	80	80	-
Specific heat $\left(\mathrm{Btu} / \mathrm{lb}-\mathrm{mol} \cdot{ }^{\circ} \mathrm{F}\right)^{*}$	51.0	44.0	47.5
Molecular weight	128	94	111
Density $\left(\mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)$	63.0	67.2	65.0

*Independent of temperature. (Ans.: $T=199^{\circ} \mathrm{F}$)
(Courtesy of the California Board of Registration for Professional \&
Land Surveyors.)

P 12-21

The irreversible liquid-phase reactions
Reaction 1: $\mathrm{A}+\mathrm{B} \longrightarrow 2 \mathrm{C} \quad r_{1 C}=k_{1 C} C_{A} C_{B}$
Reaction 2: $2 \mathrm{~B}+\mathrm{C} \longrightarrow \mathrm{D} \quad r_{2 D}=k_{2 D} C_{B} C_{C}$
are carried out in a PFR with heat exchange. The following temperature profiles were obtained for the reactor and the coolant stream:

Figure $\mathbf{P 1 2 - 2 1} \mathbf{B}_{\mathbf{B}} \quad$ Reactant temperature T and coolant temperature T_{a} profiles.

The concentrations of A, B, C, and D were measured at the point down the reactor where the liquid temperature, T, reached a maximum, and they were found to be $C_{A}=0.1, C_{B}=0.2, C_{C}=0.5$, and $C_{D}=1.5$, all in $\mathrm{mol} / \mathrm{dm}^{3}$. The product of the overall heat-transfer coefficient and the heat-exchanger area per unit volume, Ua, is $10 \mathrm{cal} / \mathrm{s} \cdot d \mathrm{~m}^{3} \cdot \mathrm{~K}$. The entering molar flow rate of A is $10 \mathrm{~mol} / \mathrm{s}$.

Additional information
$C_{P_{A}}=C_{P_{B}}=C_{P_{C}}=30 \mathrm{cal} / \mathrm{mol} / \mathrm{K} \quad C_{P_{D}}=90 \mathrm{cal} / \mathrm{mol} / \mathrm{K}, \quad C_{P_{I}}=100 \mathrm{cal} / \mathrm{mol} / \mathrm{K}$
$\Delta H_{R x 1 A}^{\circ}=+5000 \mathrm{cal} / \mathrm{mol} A ; \quad k_{1 C}=0.043\left(\mathrm{dm}^{3} / \mathrm{mol} \cdot \mathrm{s}\right)$ at 400 K
$\Delta H_{R x 2 B}^{\circ}=+5000 \mathrm{cal} / \mathrm{molB} ; \quad k_{2 D}=0.4\left(d \mathrm{~m}^{3} / \mathrm{mol} \cdot \mathrm{s}\right) \exp 5000 \mathrm{~K}\left[\frac{1}{500}-\frac{1}{T}\right]$
(a) What is the activation energy for Reaction (1)?

