# Workshop 06: Multiple reactions Lecture notes for chemical reaction engineering 

## Ranjeet Utikar

2024-03-24

Try following problems from Fogler 5e (Fogler 2016). P 8-3, P 8-4, P 8-7, P 8-9
We will go through some of these problems in the workshop.

## P 8-3

The following reactions

$$
\begin{array}{ll}
\mathrm{A} \stackrel{\mathrm{k}_{1}}{\rightleftharpoons} \mathrm{D} & -r_{1 A}=k_{1}\left[C_{A}-C_{D} / K_{1 A}\right] \\
\mathrm{A} \stackrel{\mathrm{k}_{2}}{\rightleftharpoons} \mathrm{U} & -r_{2 A}=k_{2}\left[C_{A}-C_{U} / K_{2 A}\right]
\end{array}
$$

take place in a batch reactor.
Additional information:
$k_{1}=1.0 \mathrm{~min}^{-1} ; K_{1 A}=10$
$k_{2}=100 \mathrm{~min}^{-1} ; K_{2 A}=1.5$
$C_{A 0}=1 \mathrm{~mol} / \mathrm{dm}^{3}$
(a) Plot and analyze conversion and the concentrations of $A, D$, and $U$ as a function of time. When would you stop the reaction to maximize the concentration of D? Describe what you find.
(b) When does the maximum concentration of $U$ occur? (Ans.: $t=0.04 \mathrm{~min}$ )
(c) What are the equilibrium concentrations of $A, D$, and $U$ ?
(d) What would be the exit concentrations from a CSTR with a space time of 1.0 min ? Of 10.0 min ? Of 100 min ?

## P 8-4

Consider the following system of gas-phase reactions:

$$
\begin{array}{lll}
\mathrm{A} \longrightarrow \mathrm{X} & r_{X}=k_{1} C_{A}^{1 / 2} & k_{1}=0.004\left(\mathrm{~mol} / \mathrm{dm}^{3}\right)^{1 / 2} \cdot \mathrm{~min}^{-1} \\
\mathrm{~A} \longrightarrow \mathrm{~B} & r_{B}=k_{2} C_{A} & k_{2}=0.3 \mathrm{~min}^{-1} \\
\mathrm{~A} \longrightarrow \mathrm{Y} & r_{Y}=k_{3} C_{A}^{2} & k_{3}=0.25 \mathrm{dm}^{3} / \mathrm{mol} \cdot \mathrm{~min}^{-1}
\end{array}
$$

$B$ is the desired product, and $X$ and $Y$ are foul pollutants that are expensive to get rid of. The specific reaction rates are at $27^{\circ} \mathrm{C}$. The reaction system is to be operated at $27^{\circ} \mathrm{C}$ and 4 atm . Pure A enters the system at a volumetric flow rate of $10 \mathrm{dm}^{3} / \mathrm{min}$.
(a) Sketch the instantaneous selectivities $\left(S_{B / X}, S_{B / Y}\right.$, and $S_{B / X Y}=r_{B} /\left(r_{X}+r_{Y}\right)$ ) as a function of the concentration of $\mathrm{C}_{\mathrm{A}}$.
(b) Consider a series of reactors. What should be the volume of the first reactor?
(c) What are the effluent concentrations of $\mathrm{A}, \mathrm{B}, \mathrm{X}$, and Y from the first reactor?
(d) What is the conversion of A in the first reactor?
(e) If $99 \%$ conversion of $A$ is desired, what reaction scheme and reactor sizes should you use to maximize $S_{B / X Y}$ ?
(f) Suppose that $\mathrm{E}_{1}=20,000 \mathrm{cal} / \mathrm{mol}, \mathrm{E}_{2}=10,000 \mathrm{cal} / \mathrm{mol}$, and $\mathrm{E}_{3}=30,000 \mathrm{cal} / \mathrm{mol}$. What temperature would you recommend for a single CSTR with a space time of 10 min and an entering concentration of $A$ of $0.1 \mathrm{~mol} / \mathrm{dm}^{3}$ ?

## P8-9

The elementary liquid-phase series reaction

$$
\mathrm{A} \xrightarrow{\mathrm{k}_{1}} \mathrm{~B} \xrightarrow{\mathrm{k}_{2}} \mathrm{C}
$$

is carried out in a $500-\mathrm{dm}^{3}$ batch reactor. The initial concentration of A is $1.6 \mathrm{~mol} / \mathrm{dm}^{3}$. The desired product is $B$, and separation of the undesired product $C$ is very difficult and costly. Because the reaction is carried out at a relatively high temperature, the reaction is easily quenched.
(a) Plot and analyze the concentrations of $\mathrm{A}, \mathrm{B}$, and C as a function of time. Assume that each reaction is irreversible, with $k_{1}=0.4 h^{-1}$ and $k_{2}=0.01 h^{-1}$.
(b) Plot and analyze the concentrations of $\mathrm{A}, \mathrm{B}$, and C as a function of time when the first reaction is reversible, with $k_{-1}=0.3 h^{-1}$.
(c) Plot and analyze the concentrations of $\mathrm{A}, \mathrm{B}$, and C as a function of time for the case where both reactions are reversible, with $k_{-2}=0.005 h^{-1}$.
(d) Compare (a), (b), and (c) and describe what you find.
(e) Vary $k_{1}, k_{2}, k_{-1}$, and $k_{-2}$. Explain the consequence of $k_{1}>100$ and $k_{2}<0.1$ and with $k_{-1}=k_{-2}=0$ and with $k_{-2}=1, k_{-1}=0$, and $k_{-2}=0.25$.

## References

Fogler, H. Scott. 2016. Elements of Chemical Reaction Engineering. Fifth edition. Boston: Prentice Hall.

