
Solutions to workshop 05: Collection and
analysis of rate data

Lecture notes for chemical reaction engineering

Ranjeet Utikar

2024-03-23

Try following problems from Fogler 5e (Fogler 2016). P 7-4, P 7-5, P 7-6, P 7-7, P 7-10

We will go through some of these problems in the workshop.

P 7-4

When arterial blood enters a tissue capillary, it exchanges oxygen and carbon dioxide with its
environment, as shown in this diagram.

The kinetics of this deoxygenation of hemoglobin in blood was studied with the aid of a tubular
reactor by Nakamura and Staub (J. Physiol., 173, 161).

HbO2

𝑘1
−−⇀↽−−
𝑘−1

Hb + O2

Although this is a reversible reaction, measurements were made in the initial phases of the decompo-
sition so that the reverse reaction could be neglected. Consider a system similar to the one used by
Nakamura and Staub: the solution enters a tubular reactor (0.158 cm in diameter) that has oxygen
electrodes placed at 5-cm intervals down the tube. The solution flow rate into the reactor is 19.6
cm3/s with CA0 = 2.33 × 10–6 mol/cm3.

Electrode position 1 2 3 4 5 6 7
Percent decomposition of HbO2 0.00 1.93 3.82 5.68 7.48 9.25 11.00

1

(a) Using the method of differential analysis of rate data, determine the reaction order and the
forward specific reaction-rate constant k1 for the deoxygenation of hemoglobin.

(b) Repeat using regression.

LIGHTBULB Solution

• Reaction is reversible, but the measurements were taken in the initial phases where the
reverse reaction can be neglected

HbO2

k
−−→ Hb + O2

• % decomposition (conversion) along the length of PFR is given

Rate law: −𝑟𝐴 = 𝑘𝐶𝛼
𝐴 = 𝑘𝐶𝛼

𝐴0(1 − 𝑋)𝛼

For PFR:

𝐹𝐴0
𝑑𝑋
𝑑𝑉

= 𝑘𝐶𝛼
𝐴0(1 − 𝑋)𝛼

𝑉 = 𝐴𝑐𝑍; ⇒ 𝑑𝑉 = 𝐴𝑐𝑑𝑍

𝑑𝑋
𝑑𝑍

=
𝑘𝐶𝛼

𝐴0𝐴𝑐
𝐹𝐴0⏟

𝑎

(1 − 𝑋)𝛼

𝑑𝑋
𝑑𝑍

= 𝑎(1 − 𝑋)𝛼

Taking log

ln
𝑑𝑋
𝑑𝑍

= ln 𝑎 + 𝛼 ln(1 − 𝑋)

A plot of ln 𝑑𝑋
𝑑𝑍 vs ln(1 − 𝑋) has a slope of 𝛼

2

import numpy as np
from scipy.stats import linregress
import matplotlib.pyplot as plt

Data
delta_Z = 5 # cm
C_A0 = 2.33e-6 # mol/cm^3
v_0 = 19.6 # cm^3/s
diameter = 0.158 # cm

Ac = np.pi * diameter**2/4
F_A0 = C_A0 * v_0

electrode_positions = np.array([1, 2, 3, 4, 5, 6, 7])
percent_decomposition = np.array([0, 1.93, 3.82, 5.68, 7.48, 9.25, 11.00])

Z = (electrode_positions - 1) *delta_Z
X = percent_decomposition/100

fit polynomial to the data
coefficients = np.polyfit(Z, X, deg=2)
polynomial = np.poly1d(coefficients)

z_fit = np.linspace(Z.min(), Z.max(), 100)
x_fit = polynomial(z_fit)

plt.plot(Z, X, 'o', label='Experimental data')
plt.plot(z_fit, x_fit , '-', label='Polynomial fit')
plt.xlabel('Length (cm)')
plt.ylabel('Decomposition')
plt.title('Decomposition of HbO_2 vs. Length')

plt.legend()
plt.grid(True)

plt.show()

3

0 5 10 15 20 25 30
Length (cm)

0.00

0.02

0.04

0.06

0.08

0.10

De
co

mp
os

iti
on

Decomposition of HbO2 vs. Length
Experimental data
Polynomial fit

4

calculate the derivative of the polynomial
dxdz = np.polyder(polynomial)

calculate ln(1-X) and ln(dxdz) --> ideally should do this with fitted data
ln_1_minus_x = np.log(1-x_fit)
ln_dxdz = np.log(dxdz(z_fit))

ln_1_minus_x = np.log(1-X)
ln_dxdz = np.log(dxdz(Z))

fit line
res = linregress(ln_1_minus_x, ln_dxdz)
line = res.slope * ln_1_minus_x + res.intercept

plt.plot(ln_1_minus_x, ln_dxdz, 'o', label='Differential analysis')
plt.plot(ln_1_minus_x, line, '-', label='fitted line')

plt.annotate(
f'Slope = {res.slope:.2e}\nIntercept = {res.intercept:.2f}\nR^2 = {res.rvalue**2:.3f}',
xy=(0.5, 0.15),
xycoords='axes fraction',
fontsize=12

)

plt.xlabel('$\ln (1-X)$')
plt.ylabel('$\ln(\\frac{dX}{dZ})$')

plt.legend()
plt.grid(True)

plt.show()

pick the closest round order
order = round(res.slope)
a = np.exp(res.intercept)
k = a * F_A0 / (C_A0**order * Ac)

<>:25: SyntaxWarning: invalid escape sequence '\l'
<>:26: SyntaxWarning: invalid escape sequence '\l'
<>:25: SyntaxWarning: invalid escape sequence '\l'
<>:26: SyntaxWarning: invalid escape sequence '\l'
C:\Users\Ranjeet\AppData\Local\Temp\ipykernel_28976\1237372626.py:25: SyntaxWarning: invalid escape sequence '\l'

plt.xlabel('$\ln (1-X)$')
C:\Users\Ranjeet\AppData\Local\Temp\ipykernel_28976\1237372626.py:26: SyntaxWarning: invalid escape sequence '\l'

plt.ylabel('$\ln(\\frac{dX}{dZ})$')

5

0.12 0.10 0.08 0.06 0.04 0.02 0.00
ln(1 X)

5.68

5.66

5.64

5.62

5.60

5.58

5.56

ln(
dX dZ

)

Slope = 1.09e+00
Intercept = -5.55
R2 = 1.000

Differential analysis
fitted line

Reaction order is = 1, and 𝑘 is 3.899 1/𝑠.

P 7-5

The liquid-phase irreversible reaction

A −−→ B + C

is carried out in a CSTR. To learn the rate law, the volumetric flow rate, 𝑣0 , (hence 𝜏 = 𝑉 /𝑣0) is
varied and the effluent concentrations of species A are recorded as a function of the space time t.
Pure A enters the reactor at a concentration of 2 mol/ dm3. Steady-state conditions exist when the
measurements are recorded.

Run 1 2 3 4 5
𝜏 (min) 15 38 100 300 1200

CA (mol/dm3) 1.5 1.25 1.0 0.75 0.5

(a) Determine the reaction order and specific reaction-rate constant.

(b) If you were to repeat this experiment to determine the kinetics, what would you do differently?
Would you run at a higher, lower, or the same temperature? If you were to take more data,
where would you place the measurements (e.g., 𝜏)?

(c) It is believed that the technician may have made a dilution factor-of-10 error in one of the
concentration measurements. What do you think? How do your answers compare using
regression (Polymath or other software) with those obtained by graphical methods?

Note: All measurements were taken at steady-state conditions.

6

LIGHTBULB Solution

• The liquid-phase irreversible reaction

A −−→ B + C

• carried out in a CSTR.

• 𝜏 vs. 𝐶𝐴 data is given

Rate law: −𝑟𝐴 = 𝑘𝐶𝛼
𝐴

For CSTR,

𝑉 = 𝜐0(𝐶𝐴0 − 𝐶𝐴)
−𝑟𝐴

⇒ 𝜏 = (𝐶𝐴0 − 𝐶𝐴)
𝑘𝐶𝛼

𝐴

∴𝑘𝐶𝛼
𝐴 = (𝐶𝐴0 − 𝐶𝐴)

𝜏
Taking log

ln 𝑘 + 𝛼 ln𝐶𝐴 = ln(𝐶𝐴0 − 𝐶𝐴
𝜏

)

7

import numpy as np
from scipy.stats import linregress
import matplotlib.pyplot as plt

Data
C_A0 = 2.0 # mol/dm^3

tau = np.array([15, 38, 100, 300, 1200]) # space time in minutes
C_A = np.array([1.5, 1.25, 1.0, 0.75, 0.5]) # concentration in mol/dm^3

plot the data
plt.plot(tau, C_A, 'o-', label='concentration')
plt.xlabel('$\\tau$')
plt.ylabel('C_A')

plt.legend()
plt.grid(True)
plt.xlim(0,1200)

plt.show()

ln_ca = np.log(C_A)
ln_ca_by_tau = np.log((C_A0 - C_A)/ tau)

fit line
res = linregress(ln_ca, ln_ca_by_tau)
line = res.slope * ln_ca + res.intercept

plt.plot(ln_ca, ln_ca_by_tau, 'o', label='Differential analysis')
plt.plot(ln_ca, line, '-', label='fitted line')

plt.annotate(
f'Slope = {res.slope:.2e}\nIntercept = {res.intercept:.2f}\nR^2 = {res.rvalue**2:.3f}',
xy=(0.5, 0.15),
xycoords='axes fraction',
fontsize=12

)

plt.xlabel('$\ln (C_A)$')
plt.ylabel('$\ln(\\frac{C_{A0}-C_A}{\\tau})$')

plt.legend()
plt.grid(True)

plt.show()

pick the closest round order
order = round(res.slope)
k = np.exp(res.intercept)

8

<>:40: SyntaxWarning: invalid escape sequence '\l'
<>:41: SyntaxWarning: invalid escape sequence '\l'
<>:40: SyntaxWarning: invalid escape sequence '\l'
<>:41: SyntaxWarning: invalid escape sequence '\l'
C:\Users\Ranjeet\AppData\Local\Temp\ipykernel_28976\2134489153.py:40: SyntaxWarning: invalid escape sequence '\l'

plt.xlabel('$\ln (C_A)$')
C:\Users\Ranjeet\AppData\Local\Temp\ipykernel_28976\2134489153.py:41: SyntaxWarning: invalid escape sequence '\l'

plt.ylabel('$\ln(\\frac{C_{A0}-C_A}{\\tau})$')

0 200 400 600 800 1000 1200

0.6

0.8

1.0

1.2

1.4

C A

concentration

0.6 0.4 0.2 0.0 0.2 0.4
ln(CA)

6.5

6.0

5.5

5.0

4.5

4.0

3.5

ln(
C A

0
C A

)

Slope = 3.00e+00
Intercept = -4.61
R2 = 1.000

Differential analysis
fitted line

9

Reaction order is = 3, and 𝑘 is 9.971e-03 1/𝑠.

P 7-6

The reaction

A −−→ B + C

was carried out in a constant-volume batch reactor where the following concentrationmeasurements
were recorded as a function of time.

t (min) 0 5 9 15 22 30 40 60
CA (mol/dm3) 2 1.6 1.35 1.1 0.87 0.70 0.53 0.35

(a) Use nonlinear least squares (i.e., regression) and one other method to determine the reaction
order, 𝛼, and the specific reaction rate, k.

(b) Nicolas Bellini wants to know, if you were to take more data, where would you place the points?
Why?

(c) Prof. Dr. Sven Köttlov from Jofostan University always asks his students, if you were to repeat
this experiment to determine the kinetics, what would you do differently? Would you run at a
higher, lower, or the same temperature? Take different data points? Explain.

(d) It is believed that the technician made a dilution error in the concentration measured at 60
min.

What do you think? How do your answers compare using regression (Polymath or other software)
with those obtained by graphical methods?

LIGHTBULB Solution

Reaction:
A −−→ B + C

• carried out in a constant-volume batch reactor

−𝑑𝐶𝐴
𝑑𝑡

= 𝑘𝐶𝛼
𝐴

• concentration measurements were recorded as a function of time.

10

import numpy as np
from scipy.integrate import solve_ivp
from scipy.optimize import minimize

from scipy.optimize import curve_fit
import matplotlib.pyplot as plt

Given data
t = np.array([0, 5, 9, 15, 22, 30, 40, 60]) # min
C_A = np.array([2, 1.6, 1.35, 1.1, 0.87, 0.7, 0.53, 0.35]) # mol/dm^3

C_A0 = C_A[0]

Define the system of ODEs
def batch_reactor(t, y, *args):

C_A = y[0]
k, n = args

rate = -k*C_A**n
dca_dt = rate

return [dca_dt]

t_span = (t.min(), t.max())

initial conditions
y0 = [C_A0]

Initial guesses of k and n
k = 1
n = 1

Objective function to minimize: the difference between C_A (experimental) and C_A (model)

def objective(params):
k,n = params

Solve the ODE using solve_ivp
solution = solve_ivp(

batch_reactor, # The ODE function to solve
t_span, # Time interval
y0, # Initial condition in a list
args=(k, n), # Additional arguments passed to the ODE function
dense_output=True # Generate a continuous solution

)

sol_specific = solution.sol(t)
C_A_model = solution.sol(t)[0]

ssr = np.sum((C_A - C_A_model)**2) # Sum of squared residuals

return ssr

Minimize the objective function
result = minimize(objective, [k,n], bounds=[(1e-4, 1e4), (0, 5)])

Extract the results
k_opt, n_opt = result.x
success = result.success

Check if the solution was successful
if not success:

print("Optimization was not successful. Try different initial guesses or methods.")

final_solution = solve_ivp(
batch_reactor, # The ODE function to solve
t_span, # Time interval
y0, # Initial condition in a list
args=(k_opt, n_opt), # Additional arguments passed to the ODE function
dense_output=True # Generate a continuous solution

)

C_A_model = final_solution.sol(t)[0]

plot the data
plt.plot(t, C_A, 'o', label='Experiment')
plt.plot(t, C_A_model, '-', label='model')
plt.xlabel('$t (min)$')
plt.ylabel('$C_A (mol/dm^3)$')

plt.legend()
plt.grid(True)
plt.xlim(0,60)

plt.show()

11

0 10 20 30 40 50 60
t(min)

0.50

0.75

1.00

1.25

1.50

1.75

2.00
C A

(m
ol/

dm
3)

Experiment
model

Initial guess for Reaction order is = 1.00, and 𝑘 is 1.000e+00.
Optimized value of Reaction order is = 1.52, and 𝑘 is 3.305e-02.

P 7-7

The following data were reported [from C. N. Hinshelwood and P. J. Ackey, Proc. R. Soc. (Lond)., A115,
215] for a gas-phase constant-volume decomposition of dimethyl ether at 504∘C in a batch reactor.
Initially, only (CH3)2O was present.

Time (s) 390 777 1195 3155 ∞
Total Pressure (mmHg) 408 488 562 799 931

(a) Why do you think the total pressure measurement at t = 0 is missing? Can you estimate it?

(b) Assuming that the reaction

(CH3)2O −−→ CH4 + H2 + CO

is irreversible and goes virtually to completion, determine the reaction order and specific reaction
rate k.

(c) What experimental conditions would you suggest if you were to obtain more data?

(d) Howwould the data and your answers change if the reaction were run at a higher temperature?
A lower temperature?

12

LIGHTBULB Solution

• constant volume batch reactor

• Data on pressure with time is given

(CH3)2O −−→ CH4 + H2 + CO

𝑦𝐴0 = 1
𝛿 = 3 − 1 = 2
𝜖 = 𝑦𝐴0𝛿 = 2
𝑉 = 𝑉0 = 𝑉0

𝑃0
𝑃 (1 + 𝜖𝑋)

𝑃 = 𝑃0(1 + 𝜖𝑋)
𝑋 = 𝑃−𝑃0

𝜖𝑃0
At 𝑡 = ∞, 𝑋 = 1
𝑃∞ = 𝑃0(1 + 2)3𝑃0
𝑃0 = 𝑃∞/3
Rate law: −𝑟𝐴 = 𝑘𝐶𝛼

𝐴
As pressure data is given, we need an equation for dP/dt
𝑑𝑃/𝑑𝑡 = 𝑑/𝑑𝑡(𝑃0(1 + 𝜖𝑋))
𝑑𝑃/𝑑𝑡 = 𝑃0𝜖𝑑𝑋/𝑑𝑡

• For constant volume batch reactor

𝑑𝐶𝐴
𝑑𝑡 = −𝑘𝐶𝛼

𝐴
𝐶𝐴 = 𝐶𝛼

𝐴0(1 − 𝑋)𝛼

𝑑𝑋
𝑑𝑡 = 𝑘(1 − 𝑋)𝛼

13

import numpy as np
from scipy.integrate import solve_ivp
from scipy.optimize import minimize

from scipy.optimize import curve_fit
import matplotlib.pyplot as plt

Given data

delta = 2
y_A0 = 1
epsilon = y_A0 * delta

t = np.array([390, 777, 1195, 3155, 10000]) # s, Replace infinity with a large number
P = np.array([408, 488, 562, 799, 931]) # mmHg

P0 = P[-1]/(1 + epsilon)

t_eval = t[:-1]
P_eval = P[:-1]

Define the system of ODEs
def batch_reactor(t, y, *args):

p = y[0]
k, n = args

X = (p-P0)/(epsilon * P0)

dxdt = k * (1-X)**n
dpdt = P0 * epsilon* dxdt

return [dpdt]

t_span = (min(t_eval), max(t_eval))

initial conditions
y0 = [P0]

Initial guesses of k and n
k = 6e-4
n = 1

Objective function to minimize: the difference between C_A (experimental) and C_A (model)

def objective(params):
k,n = params

Solve the ODE using solve_ivp
solution = solve_ivp(

batch_reactor, # The ODE function to solve
t_span, # Time interval
y0, # Initial condition in a list
args=(k, n), # Additional arguments passed to the ODE function
dense_output=True # Generate a continuous solution

)

P_model = solution.sol(t_eval)[0]

ssr = np.sum((P_eval - P_model)**2) # Sum of squared residuals

return ssr

Minimize the objective function
result = minimize(objective, [k,n], bounds=[(1e-4, 1e-3), (0, 2)])

Extract the results
k_opt, n_opt = result.x
success = result.success

Check if the solution was successful
if not success:

print("Optimization was not successful. Try different initial guesses or methods.")

t_span = (min(t), max(t))

final_solution = solve_ivp(
batch_reactor, # The ODE function to solve
t_span, # Time interval
y0, # Initial condition in a list
args=(k_opt, n_opt), # Additional arguments passed to the ODE function
dense_output=True # Generate a continuous solution

)

t_plot = np.linspace(t.min(), t.max(),100)
P_model = final_solution.sol(t_plot)[0]

plot the data
plt.plot(t, P, 'o', label='Experiment')
plt.plot(t_plot, P_model, '-', label='model')
plt.xlabel('$t (s)$')
plt.ylabel('P (mmHg)')

plt.legend()
plt.grid(True)

plt.show()

14

0 2000 4000 6000 8000 10000
t(s)

300

400

500

600

700

800

900
P (

mm
Hg

)
Experiment
model

Initial guess for Reaction order is = 1.00, and 𝑘 is 6.000e-04.
Optimized value of Reaction order is = 1.50, and 𝑘 is 8.184e-04.

P 7-10

Tests were run on a small experimental reactor used for decomposing nitrogen oxides in an auto-
mobile exhaust stream. In one series of tests, a nitrogen stream containing various concentrations
of NO2 was fed to a reactor, and the kinetic data obtained are shown in Figure P7-10. Each point
represents one complete run. The reactor operates essentially as an isothermal backmix reactor
(CSTR). What can you deduce about the apparent order of the reaction over the temperature range
studied?

The plot gives the fractional decomposition of NO2 fed versus the ratio of reactor volume V (in cm3)
to the NO2 feed rate, 𝐹𝑁𝑂2,0

(g mol/h), at different feed concentrations of NO2 (in parts per million

by weight). Determine as many rate law parameters as you can.

LIGHTBULB Solution

𝑋 = % decomposition

100
Rate law: −𝑟𝐴 = 𝑘𝐶𝑛

𝐴

• 𝑉 /𝐹𝐴0 vs. 𝑋 data is given

• Reaction carried out in CSTR

15

Figure 1: Figure P7-10 - Auto exhaust data.

16

𝑉 = 𝐹𝐴0𝑋
−𝑟𝐴

𝑉
𝐹𝐴0

= 𝑋
𝑘𝐶𝑛

𝐴

The linear nature of experiment at a given temperature in Figure 1 indicates that 𝑋 ∝ 𝑉
𝐹𝐴0

Therefore, apparent order must be zero (𝐶𝑛
𝐴 = 1).

𝑘 𝑉
𝐹𝐴0

= 𝑋

References

Fogler, H. Scott. 2016. Elements of Chemical Reaction Engineering. Fifth edition. Boston: Prentice Hall.

17

	P 7-4
	P 7-5
	P 7-6
	P 7-7
	P 7-10
	References

