# Solutions to workshop 04: Isothermal reactor design 

## Lecture notes for chemical reaction engineering

## Ranjeet Utikar

2024-03-19

Try following problems from Fogler 5e(Fogler 2016).
P 5-7, P 5-8, P 5-9, P 5-11, P 5-24, P 6-4, P 6-6, P 6-7
We will go through some of these problems in the workshop.

## P 5-7

The gas-phase reaction

$$
A \longrightarrow B+C
$$

follows an elementary rate law and is to be carried out first in a PFR and then in a separate experiment in a CSTR. When pure $A$ is fed to a $10 \mathrm{dm}^{3}$ PFR at 300 K and a volumetric flow rate of $5 \mathrm{dm}^{3} / \mathrm{s}$, the conversion is $80 \%$. When a mixture of $50 \%$ A and $50 \%$ inert (I) is fed to a $10 \mathrm{dm}^{3}$ CSTR at 320 K and a volumetric flow rate of $5 \mathrm{dm}^{3} / \mathrm{s}$, the conversion is also $80 \%$. What is the activation energy in $\mathrm{cal} / \mathrm{mol}$ ?

## Solution

Gas phase elementary reaction

$$
\mathrm{A} \longrightarrow \mathrm{~B}+\mathrm{C}
$$

Data:
PFR: $V=10 \mathrm{dm}^{3} ; V_{0}=5 \mathrm{dm}^{3} / \mathrm{s} ; T=300 \mathrm{~K} ; X=0.8$
CSTR: $V=10 \mathrm{dm}^{3} ; V_{0}=5 \mathrm{dm}^{3} / \mathrm{s} ; T=320 \mathrm{~K} ; X=0.8 ; y_{A 0}=0.5 ; y_{I 0}=0.5$
Rate: $-r_{A}=k C_{A}=k_{0} e^{-E / R T} C_{A 0}(1-X)$
For PFR:

$$
\frac{d X}{d V}=\frac{-r_{A}}{F_{A 0}}
$$

$$
\begin{gathered}
\frac{d X}{d V}=\frac{k C_{A 0}(1-X)}{C_{A 0} v_{0}(1+\epsilon X)} \\
\therefore k \tau=\int_{0}^{0.8} \frac{(1+\epsilon X)}{(1-X)} d X \\
\epsilon=y_{A 0} \delta=1+(1+1-1)=1
\end{gathered}
$$

```
import numpy as np
from scipy.integrate import quad
def RHS(X, epsilon):
    return (1 + epsilon * X) / (1 - X)
epsilon = 1
volume = 10
v_0 = 5
tau = volume/ v_0
X = 0.8
result, _ = quad(RHS, 0, X, args=(epsilon,))
k_pfr = result / tau
```

k from $\operatorname{PFR}$ experiment $=1.209$ at 300 K
For CSTR:

$$
\begin{gathered}
V=\frac{F_{A 0} X}{-\left.r_{A}\right|_{e x i t}} \\
V=\frac{v_{0} C_{A 0} X}{k C_{A 0} \frac{(1-X)}{(1+\epsilon X)}}=\frac{v_{0} X(1+\epsilon X)}{k(1-X)} \\
\epsilon=\frac{1}{2}(1+1-1)=0.5 \\
\tau=\frac{10}{2}=2 s \\
k=\frac{X(1+\epsilon X)}{\tau(1-X)}
\end{gathered}
$$

```
epsilon = 0.5
tau = 2
X = 0.8
k_cstr = (X * (1 + epsilon * X))/ (tau * (1 - X))
```

k from CSTR experiment $=2.800$ at 320 K

$$
\ln \frac{k_{2}}{k_{1}}=\frac{E}{R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]
$$

```
R = 1.987
activation_energy = np.log(k_cstr/k_pfr) * R /((1/300) - (1/320))
```

Activation energy $=8006.47 \mathrm{cal} / \mathrm{mol}$

## P 5-8

The elementary gas-phase reaction

$$
\mathrm{A} \longrightarrow \mathrm{~B}
$$

takes place isobarically and isothermally in a PFR where $63.2 \%$ conversion is achieved. The feed is pure A.

It is proposed to put a CSTR of equal volume upstream of the PFR. Based on the entering molar flow rate to $A$ to the first reactor, what will be the intermediate from the CSTR, $\mathrm{X}_{1}$, and exit conversion from the PFR, $\mathrm{X}_{2}$, based on the feed to first reactor?

The entering flow rates and all other variables remain the same as that for the single PFR.

## Solution



Gas phase reaction A B. Isothermal, isobaric PFR
$X=0.632$
Base case: PFR
$\frac{d X}{d V}=-r_{A}$
$-r_{A}=k C_{A}$
$C_{A}=C_{A 0}(1-X)$
$\tau k=\int_{0}^{X} \frac{1}{1-X} d X$
import humpy as np
from scipy.integrate import quad
RHS = lambda $\mathrm{x}: 1 /(1-\mathrm{x})$
Xf $=0.632$
th, _ = quad(RHS, 0, Xf)
$\tau k=1.00$.

CSTR added upstream of PFR. $\rightarrow$ equal volume. Therefore $\tau k=1.00$.

$$
\begin{gathered}
V=\frac{F_{A 0} X}{k C_{A 0}(1-X)} \Rightarrow \tau k=\frac{X}{1-X} \\
1=\frac{X}{1-X} \Rightarrow X_{1}=0.5
\end{gathered}
$$

For $X_{2}$

$$
\tau k=\int_{X_{1}}^{X_{2}} \frac{d X}{1-X}
$$

This integral can be easily solved by analytical method

$$
\begin{gathered}
1=\ln \frac{1}{1-X_{2}}-\ln \frac{1}{1-X_{1}} \\
1-\ln 2=\ln \frac{1}{1-X_{2}} \Rightarrow X_{2}=0.82
\end{gathered}
$$

Here's alternative numerical way to solve it.
To calculate $X_{2}$ from a given $X_{1}$ and $\tau k$, where $\tau k$ is the result of the definite integral from $X_{1}$ to $X_{2}$ of $\frac{d X}{1-X}$, you'll need to perform the inverse operation. Essentially, you need to solve for $X_{2}$ in the equation $\tau k=\int_{X_{1}}^{X_{2}} \frac{d X}{1-X}$.
This operation is not straightforward because it requires finding the roots of a function, which is an iterative numerical process. Python's scipy library has methods such as fsolve for root finding.

```
import numpy as np
from scipy.integrate import quad
from scipy.optimize import fsolve
def func(x2, x1, tau_k):
    result, _ = quad(lambda x: 1 / (1 - x), x1, x2)
    return result - tau_k
x1 = 0.5
tau_k = 1
# provide a good initial guess for x2
x2_guess = x1 + 0.1
# Solve for x2
x2 = fsolve(func, x2_guess, args=(x1, tau_k))
X = 0.816.
```


## P 5-9

The liquid-phase reaction

$$
A+B \longrightarrow C
$$

follows an elementary rate law and is carried out isothermally in a flow system. The concentrations of the A and B feed streams are 2 M before mixing. The volumetric flow rate of each stream is 5 $\mathrm{dm}^{3} / \mathrm{min}$, and the entering temperature is 300 K . The streams are mixed immediately before entering. Two reactors are available. One is a gray, $200.0 \mathrm{dm}^{3} \mathrm{CSTR}$ that can be heated to $77^{\circ} \mathrm{C}$ or cooled to 0 ${ }^{\circ} \mathrm{C}$, and the other is a white, $800.0 \mathrm{dm}^{3}$ PFR operated at 300 K that cannot be heated or cooled but can be painted red or black. Note that $k=0.07 \mathrm{dm}^{3} / \mathrm{mol} \cdot \mathrm{min}$ at 300 K and $\mathrm{E}=20 \mathrm{kcal} / \mathrm{mol}$.

- Which reactor and what conditions do you recommend? Explain the reason for your choice (e.g., color, cost, space available, weather conditions). Back up your reasoning with the appropriate calculations.
- How long would it take to achieve $90 \%$ conversion in a $200 \mathrm{dm}^{3}$ batch reactor with $\mathrm{C}_{\mathrm{A} 0}=\mathrm{C}_{\mathrm{B} 0}=1$ M after mixing at a temperature of $77^{\circ} \mathrm{C}$ ?
- What would your answer to part (b) be if the reactor were cooled to $0^{\circ} \mathrm{C}$ ?
- What conversion would be obtained if the CSTR and PFR were operated at 300 K and connected in series? In parallel with $5 \mathrm{~mol} / \mathrm{min}$ to each?
- Keeping Table 1 in mind, what batch reactor volume would be necessary to process the same amount of species A per day as the flow reactors, while achieving $90 \%$ conversion?

Table 1: Concentrations in a variable-volume gas flow system

| $C_{A}=\frac{F_{A}}{v}=\frac{F_{A 0}(1-X)}{v}$ | $=\frac{F_{A 0}(1-X)}{v_{0}(1+e X)}\left(\frac{T_{0}}{T}\right) \frac{P}{P_{0}}$ | $=C_{A 0} \frac{(1-X)}{(1+e X)}\left(\frac{T_{0}}{T}\right) \frac{P}{P_{0}}$ |
| :--- | :--- | :--- |
| $C_{B}=\frac{F_{B}}{v}=\frac{F_{A 0}\left(\Theta_{B}-(b / a) X\right)}{v}$ | $=\frac{F_{A 0}\left(\Theta_{B}-(b / a) X\right)}{v_{0}(1+e X)}\left(\frac{T_{0}}{T}\right) \frac{P}{P_{0}}$ | $=C_{A 0} \frac{\left(\Theta_{B}-(b / a) X\right)}{(1+e X)}\left(\frac{T_{0}}{T}\right) \frac{P}{P_{0}}$ |
| $C_{C}=\frac{F_{C}}{v}=\frac{F_{A 0}\left(\Theta_{C}+(c / a) X\right)}{v}$ | $=\frac{F_{A 0}\left(\Theta_{C}+(c / a) X\right)}{v_{0}(1+e X)}\left(\frac{T_{0}}{T}\right) \frac{P}{P_{0}}$ | $=C_{A 0} \frac{\left(\Theta_{C}+(c / a) X\right)}{(1+e X)}\left(\frac{T_{0}}{T}\right) \frac{P}{P_{0}}$ |
| $C_{D}=\frac{F_{D}}{v}=\frac{F_{A 0}\left(\Theta_{D}+(d / a) X\right)}{v}$ | $=\frac{F_{A 0}\left(\Theta_{D}+(d / a) X\right)}{v_{0}(1+e X)}\left(\frac{T_{0}}{T}\right) \frac{P}{P_{0}}$ | $=C_{A 0} \frac{\left(\Theta_{D}+(d / a) X\right)}{(1+e X)}\left(\frac{T_{0}}{T}\right) \frac{P}{P_{0}}$ |
| $C_{1}=\frac{F_{1}}{v}=\frac{F_{A 0} \Theta_{1}}{v}$ | $=\frac{F_{A 0} \Theta_{1}}{v_{0}(1+e X)}\left(\frac{T_{0}}{T}\right) \frac{P}{P_{0}}$ | $=C_{A 0} \Theta_{1 \frac{1}{(1+e X)}\left(\frac{T_{0}}{T}\right) \frac{P}{P_{0}}}$ |

## Solution

Hand written solution

1. recommended reactor and conditions
```
import numpy as np
from scipy.integrate import quad
from scipy.optimize import fsolve
# Data
k_300 = 0.07 # dm^3/mol min
E = 20*1000 # cal/mol
R = 1.987 # cal/mol K
V_CSTR = 200 # dm^3
V_PFR = 800 # dm^3
v_OA = 5 # dm^3/min
v_OB = 5 # dm^3/min
v_O = v_OA + v_OB
C_Ain = 2 # mol/dm^3
C_Bin = 2 # mol/dm^3
F_AO = C_Ain * v_OA
F_BO = C_Bin * v_OB
C_AO = F_AO/v_0
C_BO = F_BO/v_0
# Calculate k at 77 degC (350 K)
k_350 = k_300 * np.exp((E/R) * ((1/300) - (1/350)) )
k_273 = k_300 * np.exp((E/R) * ((1/300) - (1/273)) )
# CSTR conversion
# Calculate concentrations and rate
CA = lambda x: C_AO * (1 - x)
CB = lambda x: C_BO * (1 - x)
rA = lambda x,k: k * CA(x) * CB(x)
# Function to find the root of
def func(x, *args):
    v, fa0, k = args
    rate = rA(x,k)
    return x - v * rate/ fa0
x_guess = 0
x_cstr = fsolve(func, x2_guess, args=(V_CSTR, F_A0, k_350))
```

```
X CSTR 就 350 K = 0.926.
```

To calculate the PFR conversion we solve

$$
\frac{d X}{d V}=\frac{-r_{A}}{F_{A 0}}
$$

using similar approach from problem P 5-8.

```
# PFR conversion
def find_x(x1, *args):
    v, k, fa0 = args
    result, _ = quad(lambda x: 1 / rA(x,k), 0, x1)
    return fa0 * result - v
x_guess = 0
x_pfr = fsolve(find_x, x_guess, args=(V_PFR, k_300, F_A0))
\(X_{P F R}\) at \(300 \mathrm{~K}=0.848\).
```

As the PFR conversion is lower than CSTR conversion, use of CSTR operating at 350 K is recommended.
2. Batch time

```
# Batch time
v = 200 # dm^3
N_AO = 200 # moles
N_B0 = 200 # moles
X = 0.9
batch_time, _ = quad(lambda x: N_A0 / (rA(x, k_350) * v), 0, X)
```

Batch time at $350 \mathrm{~K}=1.065 \mathrm{~min}$.
3. Batch time at 273 K
batch_time, _ = quad(lambda x: N_AO / (rA(x, k_273) * v), 0, X)

Batch time at $273 \mathrm{~K}=3550.191 \mathrm{~min}$ ( 2.5 days).
4. CSTR / PFR connected in series

```
# Function to find the root of
def func(x, *args):
    v, fa0, k = args
    rate = rA(x,k)
    return x - v * rate/ fa0
x_guess = 0
x_cstr_1 = fsolve(func, x2_guess, args=(V_CSTR, F_A0, k_300))
def find_x(x2, *args):
    x1, v, k, fa0 = args
    result, _ = quad(lambda x: 1 / rA(x,k), x1, x2)
    return fa0 * result - v
x_guess = x_cstr_1
x_pfr_2 = fsolve(find_x, x_guess, args=(x_cstr_1, V_PFR, k_300, F_A0))
X1,CSTR}\mathrm{ at 300 K=0.440.
X 2,PFR}\mathrm{ at }300\textrm{K}=0.865
```

5. CSTR and PFR connected in parallel
```
# Function to find the root of
def func(x, *args):
    v, fa0, k = args
    rate = rA(x,k)
    return x - v * rate/ fa0
x_guess = 0
x_cstr_1 = fsolve(func, x2_guess, args=(V_CSTR, F_A0/2, k_300))
def find_x(x2, *args):
    x1, v, k, fa0 = args
    result, _ = quad(lambda x: 1 / rA(x,k), x1, x2)
    return fa0 * result - v
x_guess = 0
x_pfr_2 = fsolve(find_x, x_guess, args=(0, V_PFR, k_300, F_A0/2))
X ,CSTR}\mathrm{ at 300 K=0.555.
X 2,PFR}\mathrm{ at }300\textrm{K}=0.918
X Final }=0.736
```


## P 5-11

The irreversible elementary gas-phase reaction

$$
\mathrm{A}+\mathrm{B} \longrightarrow \mathrm{C}+\mathrm{D}
$$

is carried out isothermally at 305 K in a packed-bed reactor with 100 kg of catalyst.
The entering pressure was 20 atm and the exit pressure is 2 atm . The feed is equal molar in $A$ and $B$ and the flow is in the turbulent flow regime, with $\mathrm{F}_{\mathrm{A} 0}=10 \mathrm{~mol} / \mathrm{min}$ and $\mathrm{C}_{\mathrm{A} 0}=0.4 \mathrm{~mol} / \mathrm{dm}^{3}$. Currently $80 \%$ conversion is achieved. What would be the conversion if the catalyst particle size were doubled and everything else remained the same?


Figure 1: Packed bed reactor

## Solution

Hand written solution
Elementary reaction

$$
\mathrm{A}+\mathrm{B} \longrightarrow \mathrm{C}+\mathrm{D}
$$

From the initial conversion data given, we will determine rate constant. And use this rate constant to calculate coversion when catalyst particle size is dubbled.
Isothermal reaction

$$
C_{A}=C_{A 0}(1-X) \frac{P}{P_{0}}
$$

let $P / P_{0}=y$. For single isothermal reactions with $\epsilon=0, y^{2}=1-\alpha w$
Equimolar flow of A and B. Therefore, $C_{A}=C_{B}$

$$
\begin{gather*}
-r_{A}^{\prime}=k C_{A} C_{B}=k C_{A}^{2}=k C_{A 0}^{2}(1-X)^{2} y^{2}  \tag{1}\\
\frac{d X}{d W}=\frac{-r_{A}^{\prime}}{F_{A 0}}  \tag{2}\\
\frac{d y}{d W}=-\frac{\alpha}{2 p}  \tag{3}\\
\frac{d X}{d W}=\frac{k C_{A 0}^{2}(1-X)^{2} y^{2}}{F_{A 0}} \\
\frac{d X}{(1-X)^{2}}=\frac{k C_{A 0}^{2}}{F_{A 0}}(1-\alpha w)^{2} d W
\end{gather*}
$$

$$
\begin{align*}
\int_{0}^{X} \frac{d X}{(1-X)^{2}} & =\frac{k C_{A 0}^{2}}{F_{A 0}} \int_{0}^{W}(1-\alpha w)^{2} d W \\
\frac{X}{(1-X)} & =\frac{k C_{A 0}^{2}}{F_{A 0}}\left[W-\frac{\alpha W^{2}}{2}\right] \tag{4}
\end{align*}
$$

$y=2 / 20=0.1, y^{2}=1-\alpha W$. Therefore, $\alpha=\left(1-(0.1)^{2}\right) /(100)=9.9 \times 10^{-3} 1 / \mathrm{kg}$ Substituting in Equation 4 we get $k=4.95 \mathrm{dm}^{6} /(\mathrm{kg}-$ cat mol min $)$.
For Turbulent flow, $\alpha \approx 1 / D p$. Therefore, as the particle size doubles, $\alpha$ will be halved. $\alpha=4.95 \times 10^{-3}$
Substituting in Equation 4: $X=0.86$
Alternate approach
We can solve Equation 1, Equation 2, and Equation 3 simultaneously to obtain conversion and pressure as a function of weight.
As we do not know $k$ value, we will use root finding to find the value of $k$ that satisfies the condition where X reaches $X_{\text {final }}$ at $W_{\text {final }}$.

```
import numpy as np
from scipy.integrate import solve_ivp
from scipy.optimize import root_scalar
T = 305 # K
W = 100 # kg
F_AO = 10 # mol/min
C_AO = 0.4 # mol/dm`3
X_final = 0.8
P_0 = 20 # atm
P = 2 # atm
# Calculate alpha using pressure drop data
y = P/P_0
alpha_1 = (1 - y**2)/W
# System of differential equations
def system(W, y, *args):
    X, p = y
    k, ca0, fa0, alpha = args
    rate = k * ca0**2 * (1-X)**2 * p**2
    dX_dW = rate / fa0
    dp_dW = -alpha / (2*p)
    return [dX_dW, dp_dW]
# initial conditions
# at start of reactor, conversion is 0 and p is 1
y0 = [0, 1]
# Function to integrate over W
def solve_k(k):
    system_args = (k, C_AO, F_AO, alpha_1)
    sol = solve_ivp(system, [0, W], y0, args=system_args, dense_output=True)
    X = sol.sol(W)[0]
    return X - X_final
# Use root finding to solve for k
# since we don't know the value of k we provide a very large search space
result = root_scalar(solve_k, bracket=[1e-4, 1e4], method='bisect')
k = result.root
# Now alpha is alpha/2
alpha_2 = alpha_1/2
# Calculate the final conversion with this new alpha value
system_args = (k, C_AO, F_AO, alpha_2)
sol = solve_ivp(system, [0, W], y0, args=system_args, dense_output=True)
X = sol.sol(W)[0]
```

```
k=4.963.
X(for \alpha=0.005)=0.856.
```


## P 5-24

The gas-phase reaction

$$
\mathrm{A}+\mathrm{B} \longrightarrow \mathrm{C}+\mathrm{D}
$$

takes place isothermally at 300 K in a packed-bed reactor in which the feed is equal molar in A and $B$ with $C_{A 0}=0.1 \mathrm{~mol} / \mathrm{dm}^{3}$. The reaction is second order in A and zero order in B. Currently, $50 \%$ conversion is achieved in a reactor with 100 kg of catalysts for a volumetric flow rate $100 \mathrm{dm}^{3} / \mathrm{min}$. The pressure-drop parameter, $\alpha$, is $\alpha=0.0099 \mathrm{~kg}^{-1}$. If the activation energy is $10,000 \mathrm{cal} / \mathrm{mol}$, what is the specific reaction rate constant at 400 K ?

## Solution

Hand written solution

```
import numpy as np
from scipy.integrate import solve_ivp
from scipy.optimize import root_scalar
T = 300 # K
W = 100 # kg
v_0 = 100 # dm^3/min
C_AO = 0.1 # mol/dm^3
F_AO = C_AO * v_O # mol/min
X_final = 0.5
alpha_1 = 0.0099 # 1/kg
# System of differential equations
def system(W, y, *args):
    X, p = y
    k, ca0, fa0, alpha = args
    rate = k * ca0**2 * (1-X)**2 * p**2
    dX_dW = rate / fa0
    dp_dW = -alpha / (2*p)
    return [dX_dW, dp_dW]
# initial conditions
# at start of reactor, conversion is 0 and p is 1
y0 = [0, 1]
# Function to integrate over W
def solve_k(k):
    system_args = (k, C_AO, F_AO, alpha_1)
    sol = solve_ivp(system, [0, W], y0, args=system_args, dense_output=True)
    X = sol.sol(W)[0]
    return X - X_final
# Use root finding to solve for k
# since we don't know the value of k we provide a very large search space
result = root_scalar(solve_k, bracket=[1e-4, 1e4], method='bisect')
k = result.root
EA = 10000 # cal/mol
T2 = 400
R = 1.987
ln_k2k1 = (EA/R)*((1/T) - (1/T2))
k2 = k*np.exp(ln_k2k1)
k at 300 K = 19.832 dm
k}\mathrm{ at 400 K = 1314.531 dm
```


## P 6-4

The elementary gas-phase reaction

$$
\begin{gathered}
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6}+2 \mathrm{CH}_{3} \mathrm{COCH}_{3} \\
\mathrm{~A} \longrightarrow \mathrm{~B}+2 \mathrm{C}
\end{gathered}
$$

is carried out isothermally at 400 K in a flow reactor with no pressure drop. The specific reaction rate at $50^{\circ} \mathrm{C}$ is $10^{-4} \mathrm{~min}^{-1}$ (from pericosity data) and the activation energy is $85 \mathrm{~kJ} / \mathrm{mol}$. Pure di-tert-butyl peroxide enters the reactor at 10 atm and $127^{\circ} \mathrm{C}$ and a molar flow rate of $2.5 \mathrm{~mol} / \mathrm{min}$, i.e., $\mathrm{F}_{\mathrm{A}}=2.5$ $\mathrm{mol} / \mathrm{min}$.

- Use the algorithm for molar flow rates to formulate and solve the problem. Plot $\mathrm{F}_{\mathrm{A}}, \mathrm{F}_{\mathrm{B}}, \mathrm{F}_{\mathrm{C}}$, and then X as a function of plug-flow reactor volume and space time to achieve $90 \%$ conversion.
- Calculate the plug-flow volume and space time for a CSTR for $90 \%$ conversion.


## Solution

Hand written solution

```
import numpy as np
from scipy.integrate import quad
import matplotlib.pyplot as plt
T_ref = 273.15
R = 0.0821
T0 = 127 + T_ref # K
EA = 85000 # J/mol
PO = 10 # atm
yA0 = 1
F_AO = 2.5 # mol/min
C_AO = yAO * PO/(R * TO)
delta = 1 + 2 -1
epsilon = yAO * delta
k_50 = 1e-4 # 1/min
k_127 = k_50* np.exp( (EA/8.314) * (1/(50 + T_ref) - (1/T0)) )
CA = lambda x: C_AO * (1 - x) / (1 + epsilon * x)
rA = lambda k, x: k * CA(x)
# Molar flow rates
FA = lambda x: F_AO * (1 - x)
FB = lambda x: F_AO * (x)
FC = lambda x: F_AO * (2 * x)
def integral(x, *args):
    fa0, k = args
    return fa0/ rA(k, x)
system_args = (F_A0, k_127)
X_range = np.linspace(0, 0.9, 100)
V = []
# Calculate volume for each X
for X in X_range:
    v, _ = quad(integral, 0, X, args=system_args)
    V.append(v)
plt.plot(V, X_range, label='X vs. Volume')
plt.xlabel('Volume ($dm^3$)')
plt.ylabel('Conversion (X)')
plt.title('Conversion X as a Function of Reactor Volume')
plt.legend()
plt.grid(True)
plt.ylim(0,1)
plt.xlim(0,1000)

```

FA_v = FA(X_range)

```
FA_v = FA(X_range)
FB_v = FB(X_range)
FB_v = FB(X_range)
FC_v = FC(X_range)
FC_v = FC(X_range)
plt.plot(V, FA_v, label='FA')
plt.plot(V, FA_v, label='FA')
plt.plot(V, FB_v, label='FB')
plt.plot(V, FB_v, label='FB')
plt.plot(V, FC_v, label='FC')
plt.plot(V, FC_v, label='FC')
plt.xlabel('Volume ($dm^3$)')
plt.xlabel('Volume ($dm^3$)')
plt.ylabel('Molar Flow Rate (mol/min)')
plt.ylabel('Molar Flow Rate (mol/min)')
plt.title('Molar Flow Rates of A, B, and C as Functions of Reactor Volume')
plt.title('Molar Flow Rates of A, B, and C as Functions of Reactor Volume')
plt.legend()
plt.legend()
plt.grid(True)
plt.grid(True)
plt.xlim(0, 1000)
plt.xlim(0, 1000)
plt.show()
```

plt.show()

```

Molar Flow Rates of A, B, and C as Functions of Reactor Volume

```

x_final = 0.9
system_args = (F_A0, k_127)
V_PFR, _ = quad(integral, 0, x_final, args=system_args)
V_CSTR = F_AO * x_final / rA(k_127, x_final)
v0 = F_A0/ C_AO
v = v0 *(1 + epsilon * x_final)
tau = V_CSTR/v

```
\(V_{P F R}\) for \(\mathrm{X}=0.90\) at \(127^{\circ} \mathrm{C}=952.277 \mathrm{dm}^{3}\).
\(V_{C S T R}\) for \(\mathrm{X}=0.90\) at \(127^{\circ} \mathrm{C}=4698.226 \mathrm{dm}^{3}\).
\(\tau_{C S T R}\) for \(\mathrm{X}=0.90\) at \(127^{\circ} \mathrm{C}=204.301\) min .

\section*{P 6-6}
(Membrane reactor) The first-order, gas-phase, reversible reaction
\[
A \rightleftharpoons B+2 C
\]
is taking place in a membrane reactor. Pure A enters the reactor, and B diffuses out through the membrane. Unfortunately, a small amount of the reactant A also diffuses through the membrane.
- Plot and analyze the flow rates of \(\mathrm{A}, \mathrm{B}\), and C and the conversion X down the reactor, as well as the flow rates of \(A\) and \(B\) through the membrane.
- Next, compare the conversion profiles in a conventional PFR with those of a membrane reactor from part (a). What generalizations can you make?
- Would the conversion of \(A\) be greater or smaller if \(C\) were diffusing out instead of \(B\) ?
- Discuss qualitatively how your curves would change if the temperature were increased significantly or decreased significantly for an exothermic reaction. Repeat the discussion for an endothermic reaction.

Additional information:
\[
\begin{array}{ll}
\hline \mathrm{k}=10 \mathrm{~min}^{-1} & \mathrm{~F}_{\mathrm{AO}}=100 \mathrm{~mol} / \mathrm{min} \\
\mathrm{~K}_{\mathrm{C}}=0.01 \mathrm{~mol}^{2} / \mathrm{dm}^{3} & v_{0}=100 \mathrm{dm}^{3} / \mathrm{min} \\
\mathrm{k}_{\mathrm{CA}}=1 \mathrm{~min}^{-1} & \mathrm{~V}_{\text {reactor }}=20 \mathrm{dm}^{3} \\
\mathrm{k}_{\mathrm{CB}}=40 \mathrm{~min}^{-1} & \\
\hline
\end{array}
\]

\section*{Solution}

Hand written solution
```

import numpy as np
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt

# Data

k = 10 \# 1/min
K_eq = 0.01 \# mol/dm^3^
k_CA = 1 \# min^-1^
k_CB = 40 \# min^-1^
F_AO = 100 \# mol/min
v_0 = 100 \# dm^3^/min
V_reactor = 20 \# dm^3^
C_TO = F_AO/v_0
r_A = lambda ca, cb, cc: - k * (ca - cb * cc**2/ K_eq )
r_B = lambda ca, cb, cc: - r_A(ca, cb, cc)
r_C = lambda ca, cb, cc: - r_A(ca, cb, cc)/2
r_diff_A = lambda ca: k_CA * ca
r_diff_B = lambda cb: k_CB * cb
C = lambda f, ft: C_T0 * f/ft

# System of differential equations for membrane reactor

def membrane_reactor(V, y, *args):
FA, FB, FC = y
FT = FA + FB + FC
CA = C(FA, FT)
CB}=\textrm{C}(\textrm{FB},\textrm{FT}
CC=C(FC,FT)
dFA_dV = r_A(CA, CB, CC) - r_diff_A(CA)
dFB_dV = r_B(CA, CB, CC) - r_diff_B(CB)
dFC_dV = r_C(CA,CB,CC)
return [dFA_dV, dFB_dV, dFC_dV]

# System of differential equations for pfr

def pfr(V, y, *args):
FA, FB, FC = y
FT = FA + FB + FC
CA = C(FA, FT)
CB}=C(FB,FT
CC = C(FC, FT)
dFA_dV = r_A(CA, CB, CC)
dFB_dV = r_B(CA, CB, CC)
dFC_dV = r_C(CA, CB, CC)


## P6-7

Fuel Cells Rationale. With the focus on alternative clean-energy sources, we are moving toward an increased use of fuel cells to operate appliances ranging from computers to automobiles. For example, the hydrogen/oxygen fuel cell produces clean energy as the products are water and electricity, which may lead to a hydrogen-based economy instead of a petroleum-based economy. A large component in the processing train for fuel cells is the water-gas shift membrane reactor. (M. Gummala, N. Gupla, B. Olsomer, and Z. Dardas, Paper 103c, 2003, AIChE National Meeting, New Orleans, LA.)

$$
\mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CO}_{2}+\mathrm{H}_{2}
$$

Here, CO and water are fed to the membrane reactor containing the catalyst. Hydrogen can diffuse out the sides of the membrane, while $\mathrm{CO}, \mathrm{H}_{2} \mathrm{O}$, and $\mathrm{CO}_{2}$ cannot. Based on the following information, plot the concentrations and molar flow rates of each of the reacting species down the length of the membrane reactor.

Assume the following: The volumetric feed is $10 \mathrm{dm}^{3} / \mathrm{min}$ at 10 atm , and the equimolar feed of CO and water vapor with $\mathrm{C}_{\mathrm{T} 0}=0.4 \mathrm{~mol} / \mathrm{dm}^{3}$. The equilibrium constant is $\mathrm{K}_{\mathrm{e}}=1.44$, with $\mathrm{k}=1.37$ $d m^{6} / \mathrm{mol} \mathrm{kg}$-cat $\cdot \mathrm{min}$, and the mass transfer coefficient $k_{\mathrm{H}_{2}}=0.1 \mathrm{dm} \mathrm{m}^{3} \mathrm{~kg}$-cat $\cdot \mathrm{min}$
(Hint: First calculate the entering molar flow rate of CO and then relate $\mathrm{F}_{\mathrm{A}}$ and X .)

- What is the membrane reactor volume necessary to achieve $85 \%$ conversion of CO?
- Sophia wants you to compare the MR with a conventional PFR. What will you tell her?
- For that same membrane reactor volume, Nicolas wants to know what would be the conversion of CO if the feed rate were doubled?


Figure 2: Fuel cell

## Solution

Hand written solution

```
import numpy as np
from scipy.integrate import solve_ivp
from scipy.optimize import root_scalar
import matplotlib.pyplot as plt
# Data
k = 1.37
K_eq = 1.44
k_H2 = 0.1
v_0 = 10
p = 10
C_T0 = 0.4
F_AO = C_TO* v_0/2
F_BO = C_TO* v_0/2
F_CO = 0
F_D0 = 0
# A, B, C, D --> CO, H2O, CO2, H2
# System of differential equations for membrane reactor
def fuel_cell(V, y, *args):
    FA, FB, FC, FD = y
    FT}=FA+FB+FC+F
    CA = C_TO * FA / FT
    CB = C_TO * FB / FT
    CC = C_TO * FC / FT
    CD}=\mp@subsup{C}{_}{-TO * FD / FT
    rate = -k *(CA * CB - CC * CD/ K_eq)
    rA = rate
    rB = rate
    rC = -rate
    rD = -rate
    rH2 = k_H2 * CD
    dFA_dV = rA
    dFB_dV = rB
    dFC_dV = rC
    dFD_dV = rD - rH2
    return [dFA_dV, dFB_dV, dFC_dV, dFD_dV]
# initial conditions
# at start of reactor, conversion is 0 and p is 1
yO = [F_AO, F_BO, F_CO, F_DO]


Volume of reacctor to achieve \(\mathrm{X}=0.85: 429.53 \mathrm{dm}^{3}\).

\section*{References}

Fogler, H. Scott. 2016. Elements of Chemical Reaction Engineering. Fifth edition. Boston: Prentice Hall.```

