Workshop 03: Rate law and stoichiometry

Lecture notes for chemical reaction engineering

Ranjeet Utikar

2024-03-10

Try following problems from Fogler 5e(Fogler 2016).

```
P3-5, P3-10, P3-11, P3-12, P 4-6, P 4-8, P 4-11
```

We will go through some of these problems in the workshop.

P 3.12

Write the rate law for the following reactions assuming each reaction follows an elementary rate law. Give the units of k_{A} for each, keeping in mind some are homogeneous and some reactants are heterogeneous.

1. $\mathrm{C}_{2} \mathrm{H}_{6} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{H}_{2}$
2. $\mathrm{C}_{2} \mathrm{H}_{4}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
3. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3} \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{6}+2 \mathrm{CH}_{3} \mathrm{COCH}_{3}$
4. $\mathrm{nC}_{4} \mathrm{H}_{10} \rightleftharpoons \mathrm{iC}_{4} \mathrm{H}_{10}$
5. $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{4} \mathrm{H}_{9}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
6. $2 \mathrm{CH}_{3} \mathrm{NH}_{2} \underset{\text { cat }}{\rightleftharpoons}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}+\mathrm{NH}_{3}$
7. $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons 2 \mathrm{CH}_{3} \mathrm{COOH}$

P3-10

The initial reaction rate for the elementary reaction $2 \mathrm{~A}+\mathrm{B} \longrightarrow 4 \mathrm{C}$ was measured as a function of temperature when the concentration of A was 2 M and that of B was 1.5 M .

${ }_{-r_{A}\left(\mathrm{~mol} / \mathrm{dm}^{3} \mathrm{~s}\right)}$	$T(\mathrm{~K})$
0.002	300
0.046	320
0.72	340
8.33	360

1. What is the activation energy?
2. What is the frequency factor?
3. What is the rate constant as a function of temperature using Equation 1 and $T_{0}=27^{\circ} \mathrm{C}$ as the base case?

$$
\begin{equation*}
k(T)=k\left(T_{0}\right) \exp \left[\frac{E}{R}\left(\frac{1}{T_{0}}-\frac{1}{T}\right)\right] \tag{1}
\end{equation*}
$$

P 4-8

The gas-phase reaction

$$
\frac{1}{2} \mathrm{~N}_{2}+\frac{3}{2} \mathrm{H}_{2} \longrightarrow \mathrm{NH}_{3}
$$

is to be carried out isothermally first in a flow reactor. The molar feed is $50 \% \mathrm{H}_{2}$ and $50 \% \mathrm{~N}_{2}$, at a pressure of 16.4 atm and at a temperature of $227^{\circ} \mathrm{C}$? .
(a) Construct a complete stoichiometric table.
(b) Express the concentrations in $\mathrm{mol} / \mathrm{dm}^{3}$ of each for the reacting species as a function of conversion. Evaluate $C_{A 0}, \delta$ and ϵ, and then calculate the concentrations of ammonia and hydrogen when the conversion of H_{2} is 60%.
(c) Suppose by chance the reaction is elementary with $k_{N_{2}}=40 \mathrm{dm}^{3} / \mathrm{mol} / \mathrm{s}$. Write the rate of reaction solely as a function of conversion for
(1) a flow reactor, and for
(2) a constant-volume batch reactor.

P 4-11

Consider a cylindrical batch reactor that has one end fitted with a frictionless piston attached to a spring (See Figure Figure 1). The reaction

$$
\mathrm{A}+\mathrm{B} \longrightarrow 8 \mathrm{C}
$$

with the rate law
$-r_{A}=k_{1} C_{A}^{2} C_{B}$
is taking place in this type of reactor.
(a) Write the rate law solely as a function of conversion, numerically evaluating all possible symbols.
(b) What is the conversion and rate of reaction when $V=0.2 f t^{3}$?

Figure 1: Cylindrical batch reactor

Additional information:
Equal moles of A and B are present at t_{0}
Initial volume: $0.15 \mathrm{ft}^{3}$
Value of $k_{1}: 1.0\left(\mathrm{ft}^{3} / \mathrm{lbmol}\right)^{2} \cdot \mathrm{~s}^{-1}$
The spring constant is such that the relationship between the volume of the reactor and pressure within the reactor is
$V=(0.1)(P)\left(\mathrm{V}\right.$ in $f t^{3}, \mathrm{P}$ in $\left.a t m\right)$
Temperature of system (considered constant): $140^{\circ} \mathrm{F}$
Gas constant: $0.73 \mathrm{ft}^{3} \mathrm{~atm} / \mathrm{lbmol} \cdot{ }^{\circ} R$
Fogler, H. Scott. 2016. Elements of Chemical Reaction Engineering. Fifth edition. Boston: Prentice Hall.

