Workshop 02 Solution: Conversion and reactor sizing

Lecture notes for chemical reaction engineering

Ranjeet Utikar

2024-03-03

Problem 1

P2-3: You have two CSTRs and two PFRs, each with a volume of $1.6m^3$. Use Figure 1 to calculate the conversion for each of the reactors in the following arrangements.

- (a) Two CSTRs in series.
- (b) Two PFRs in series.
- (c) Two CSTRs in parallel with the feed, F_{A0} , divided equally between the two reactors.
- (d) Two PFRs in parallel with the feed divided equally between the two reactors.
- (e) A CSTR and a PFR in parallel with the flow equally divided. Calculate the overall conversion, X_{ov}

$$X_{ov} = \frac{F_{A0} - F_{A,CSTR} - F_{A,PFR}}{F_{A0}} \label{eq:Xov}$$

with

$$F_{A,CSTR} = \frac{F_{A0}}{2} - \frac{F_{A0}}{2} X_{CSTR}, \text{ and } F_{A,PFR} = \frac{F_{A0}}{2} (1 - X_{PFR})$$

- (f) A PFR followed by a CSTR.
- (g) A CSTR followed by a PFR.
- (h) A PFR followed by two CSTRs. Is this arrangement a good arrangement or is there a better one?

Solution:

To read the CSV file use the genfromtxt function from numpy

Figure 2-2B Levenspiel plot of processed data 2.

Figure 1: Figure-2-2b

To interpolate the data, use CubicSpline function from scipy.interpolate.

Data plotting using matplotlib.pyplot

Add fit line to the plot

```
x_interp =np.linspace(0,1,100)
ax.plot(x interp, p1 interp(x interp), color='grey')
```

Add rectangle to the plot

```
# Adds rectangle from (0,0) with a width of x1 and height of y1
rectangle = plt.Rectangle((0, 0), x1, y1, color='skyblue', alpha=0.4)
ax.add_patch(rectangle)
```

Color area under the curve

```
Fill the area under the curve between x1 and x2
x_fill = np.linspace(x1, x2, 100)
y_fill = p1_interp(x_fill)
ax.fill_between(x_fill, y_fill, color='skyblue', alpha=0.4)
```

(a) Two CSTRs in series (Figure 3).

Figure 2: Levenspiel plot of processed data 2 for problem 2-2b

Figure 3: Conversion from two CSTR in series

Figure 4: Conversion from two PFR in series

Figure 5: Conversion from two CSTR in parallel

- (b) Two PFRs in series (Figure 4).
- (c) Two CSTRs in parallel with the feed, F_{A0} , divided equally between the two reactors (Figure 5).
- (d) Two PFRs in parallel with the feed divided equally between the two reactors (Figure 6).

Figure 6: Conversion from two PFR in parallel

- (e) A CSTR and a PFR in parallel with the flow equally divided. Calculate the overall conversion, X_{ov} (Figure 7)
- (f) A PFR followed by a CSTR (Figure 8).
- (g) A CSTR followed by a PFR (Figure 9).
- (h) A PFR followed by two CSTRs (Figure 10). Is this arrangement a good arrangement or is there a better one?

Two CSTRs followed by a PFR (Figure 11) yield final conversion of X_3 = 0.92.

Two PFRs followed by a CSTR (Figure 12) yield final conversion of X_3 = 0.97.

Problem 2

P2-4: The exothermic reaction of stillbene (A) to form the economically important trospophene (B) and methane (C), i.e.,

$$A \longrightarrow B + C$$

Figure 7: Conversion from a CSTR and a PFR in parallel $\,$

Figure 8: Conversion from a PFR followed by ${\tt CSTR}$

Figure 9: Conversion from a CSTR followed by PFR

Figure 10: Conversion from a PFR followed by two CSTRs

Figure 11: Conversion from two CSTRs followed by a PFR

Figure 12: Conversion from two PFRs followed by a CSTR

was carried out adiabatically and the following data recorded:

Table 1: Problem 2.4 rate data

X	$-r_A(mol/dm^3min)$
0	1
0.2	1.67
0.4	5
0.45	5
0.5	5
0.6	5
0.8	1.25
0.9	0.91

The entering molar flow rate of A was 300mol/min.

- (a) What are the PFR and CSTR volumes necessary to achieve 40% conversion?
- (b) Over what range of conversions would the CSTR and PFR reactor volumes be identical?
- (c) What is the maximum conversion that can be achieved in a $105dm^3$ CSTR?
- (d) What conversion can be achieved if a $72dm^3$ PFR is followed in series by a $24dm^3$ CSTR?
- (e) What conversion can be achieved if a $24dm^3$ CSTR is followed in a series by a $72dm^3$ PFR?
- (f) Plot the conversion and rate of reaction as a function of PFR reactor volume up to a volume of $100dm^3$.

Solution:

The rate data $(-r_A)$ is given. We need $F_{A0}/-r_A$. Dividing $F_{A0}=300$ by $-r_A$ we get:

Table 2: Processed data for problem 2

X	$-r_A$	$F_{A0}/-r_A$
0	1	300
0.2	1.67	179.641
0.4	5	60
0.45	5	60
0.5	5	60
0.6	5	60
0.8	1.25	240
0.9	0.91	329.67

Trying to fit a single cubic spline or a polynomial doesn't work well due to the nature of the data (Figure 13). The data consists of three liniear segments. Therefore, we fit a piecewise linear function using numpy.piecewise. We also use lambda functions to define the linear segments.

```
def piecewise_linear_fit(x, x0, y0, k1, k2, k3):
    """
    Piecewise linear function defined by slopes and a constant part.
    x0, y0: Coordinates of the piecewise function's bending points.
    k1, k2, k3: Slopes of the first, second, and third parts.
```


Figure 13: Levenspiel plot of processed data for problem 2-4

(a) What are the PFR and CSTR volumes necessary to achieve 40% conversion?

```
From @fig-problem-2a, $V_{CSTR}$ = 24\.00 $dm^3$.
```

(b) Over what range of conversions would the CSTR and PFR reactor volumes be identical?

Figure 14: Piecewise linear fit processed data for problem 2-4

Figure 15: Reactor volume for CSTR to achieve X = 0.4

As the slope of $F_{A0}/-r_Avs.\ X$ line is 0 between 0.4 and 0.6, the CSTR and PFR volumes over this range would be identical.

(c) What is the maximum conversion that can be achieved in a $105dm^3$ CSTR?

Figure 16: Reactor conversion for CSTR with volume = 105 dm^3

From Figure 16, X = 0.70.

- (d) What conversion can be achieved if a $72dm^3$ PFR is followed in series by a $24dm^3$ CSTR? From Figure 17, X_{PFR} = 0.40 and X_{CSTR} = 0.64.
- (e) What conversion can be achieved if a $24dm^3$ CSTR is followed in a series by a $72dm^3$ PFR? From Figure 18, X_{CSTR} = 0.40 and X_{PFR} = 0.91.
 - (f) Plot the conversion and rate of reaction as a function of PFR reactor volume up to a volume of $100dm^3$.

To create this plot (Figure 19), we will need to calculate the volume first for all X as

$$V = \int_0^x \frac{F_{A0} - r_A}{d} X$$

This data is given in Table 3

Figure 17: Reactor conversion for PFR followed by CSTR

Figure 18: Reactor conversion for CSTR followed by PFR

Table 3: Reactor conversion and rate as function fo volume

$V(dm^3)$	X	$-r_A$
0	0	1
48	0.2	1.67
72	0.4	5
75	0.45	5
78	0.5	5
84	0.6	5
113.978	0.8	1.25
142.451	0.9	0.91

Figure 19: Reactor conversion and rate as function fo volume

Problem 3

P2-7: The adiabatic exothermic irreversible gas-phase reaction

$$2A + B \longrightarrow 2C$$

is to be carried out in a flow reactor for an equimolar feed of A and B. A Levenspiel plot for this reaction is shown in Figure 20.

- (a) What PFR volume is necessary to achieve 50% conversion?
- (b) What CSTR volume is necessary to achieve 50% conversion?
- (c) What is the volume of a second CSTR added in series to the first CSTR (Part b) necessary to achieve an overall conversion of 80%?
- (d) What PFR volume must be added to the first CSTR (Part b) to raise the conversion to 80%?
- (e) What conversion can be achieved in a $6 \times 10^4 m^3$ CSTR? In a $6 \times 10^4 m^3$ PFR?

Figure P2-7_B Levenspiel plot.

Figure 20: Figure-p2-7b

(f) Think critically to critique the answers (numbers) to this problem.

Solution:

Problem 4

P2.10: The curve shown in Figure 21 is typical of a gas-solid catalytic exothermic reaction carried out adiabatically.

- (a) Assuming that you have a fluidized CSTR and a PBR containing equal weights of catalyst, how should they be arranged for this adiabatic reaction? Use the smallest amount of catalyst weight to achieve 80% conversion of A.
- (b) What is the catalyst weight necessary to achieve 80% conversion in a fluidized CSTR?
- (c) What fluidized CSTR weight is necessary to achieve 40% conversion?
- (d) What PBR weight is necessary to achieve 80% conversion?
- (e) What PBR weight is necessary to achieve 40% conversion?
- (f) Plot the rate of reaction and conversion as a function of PBR catalyst weight, W.

Additional information: FA0 = 2 mol/s.

Figure P2-10_B Levenspiel plot for an adiabatic exothermic heterogeneous reaction.

Figure 21: Figure P2-10b

Solution:

Digitized graph: (Figure 22)

Figure 22: Levenspiel plot for an adiabatic exothermic heterogeneous reaction.

- (a) Assuming that you have a fluidized CSTR and a PBR containing equal weights of catalyst, how should they be arranged for this adiabatic reaction? Use the smallest amount of catalyst weight to achieve 80% conversion of A. (Figure 23)
- (b) What is the catalyst weight necessary to achieve 80% conversion in a fluidized CSTR? (Figure 24)
- (c) What fluidized CSTR weight is necessary to achieve 40% conversion? (Figure 25)
- (d) What PBR weight is necessary to achieve 80% conversion? (Figure 26)
- (e) What PBR weight is necessary to achieve 40% conversion? (Figure 27)
- (f) Plot the rate of reaction and conversion as a function of PBR catalyst weight, W. (Data table: Table 4; Plots: Figure 28)

Table 4: Reactor conversion and rate as function fo volume

$V(dm^3)$	X	$-r_A$
0.0730885	0.00122266	0.0334255
1.597	0.02795	0.0368764
3.97751	0.0756876	0.0436557
6.4248	0.134583	0.0531844
8.88462	0.207988	0.0670574
11.6107	0.313744	0.089225
14.0622	0.436315	0.108972
16.2747	0.55899	0.109126

Table 4: Reactor conversion and rate as function fo volume

$V(dm^3)$	X	$-r_A$
18.6969	0.681754	0.0921045
21.4901	0.794571	0.0699448
23.7561	0.865033	0.0549146
25.4624	0.907618	0.0450597
27.1073	0.941305	0.037535

Figure 23: Levenspiel plot for an adiabatic exothermic heterogeneous reaction.

Figure 24: Catalyst weight for 80% conversion in CSTR

Figure 25: Catalyst weight for 40% conversion in CSTR

Figure 26: Catalyst weight for 80% conversion in PBR

Figure 27: Catalyst weight for 40% conversion in PBR

Figure 28: Reactor conversion and rate as function fo volume