Workshop 02 Solution: Conversion and reactor sizing

Lecture notes for chemical reaction engineering

Ranjeet Utikar

2024-03-03

Problem 1

P2-3: You have two CSTRs and two PFRs, each with a volume of $1.6 \mathrm{~m}^{3}$. Use Figure 1 to calculate the conversion for each of the reactors in the following arrangements.
(a) Two CSTRs in series.
(b) Two PFRs in series.
(c) Two CSTRs in parallel with the feed, $F_{A 0}$, divided equally between the two reactors.
(d) Two PFRs in parallel with the feed divided equally between the two reactors.
(e) A CSTR and a PFR in parallel with the flow equally divided. Calculate the overall conversion, $X_{o v}$

$$
X_{o v}=\frac{F_{A 0}-F_{A, C S T R}-F_{A, P F R}}{F_{A 0}}
$$

with

$$
F_{A, C S T R}=\frac{F_{A 0}}{2}-\frac{F_{A 0}}{2} X_{C S T R}, \text { and } F_{A, P F R}=\frac{F_{A 0}}{2}\left(1-X_{P F R}\right)
$$

(f) A PFR followed by a CSTR.
(g) A CSTR followed by a PFR.
(h) A PFR followed by two CSTRs. Is this arrangement a good arrangement or is there a better one?

Solution:

To read the CSV file use the genfromtxt function from numpy

```
import numpy as np
p1_expt_file = './workshop-02-problem-1-data.csv'
p1_expt_data = np.genfromtxt(p1_expt_file,
    delimiter=',',
    dtype=[('x', float),
        ('fa0_by_ra', float)],
    skip_header=1)
```


Figure 2-2B Levenspiel plot of processed data 2.

Figure 1: Figure-2-2b

To interpolate the data, use CubicSpline function from scipy. interpolate.

```
import scipy.interpolate as interpolate
p1_interp = interpolate.CubicSpline(p1_expt_data['x'],
    p1_expt_data_data['fa0_by_ra'])
```

Data plotting using matplotlib.pyplot

```
import matplotlib.pyplot as plt
fig,ax = plt.subplots()
ax.scatter(p1_expt_data['x'],
    p1_expt_data['fa0_by_ra'],
    marker='s',
    color='red')
ax.set_xlabel('Conversion X')
ax.set_ylabel('$\\frac{F_{A0}}{-r_A} (m`3)$')
# Setting x and y axis limits
ax.set_xlim(0, 1)
ax.set_ylim(0, 12)
plt.show()
```

Add fit line to the plot

```
x_interp =np.linspace(0,1,100)
ax.plot(x_interp, p1_interp(x_interp), color='grey')
```

Add rectangle to the plot

```
# Adds rectangle from (0,0) with a width of x1 and height of y1
rectangle = plt.Rectangle((0, 0), x1, y1, color='skyblue', alpha=0.4)
ax.add_patch(rectangle)
```

Color area under the curve

```
Fill the area under the curve between x1 and x2
x_fill = np.linspace(x1, x2, 100)
y_fill = p1_interp(x_fill)
ax.fill_between(x_fill, y_fill, color='skyblue', alpha=0.4)
```

(a) Two CSTRs in series (Figure 3).

Figure 2: Levenspiel plot of processed data 2 for problem 2-2b

Figure 3: Conversion from two CSTR in series

Figure 4: Conversion from two PFR in series

Figure 5: Conversion from two CSTR in parallel
(b) Two PFRs in series (Figure 4).
(c) Two CSTRs in parallel with the feed, $F_{A 0}$, divided equally between the two reactors (Figure 5).
(d) Two PFRs in parallel with the feed divided equally between the two reactors (Figure 6).

Figure 6: Conversion from two PFR in parallel
(e) A CSTR and a PFR in parallel with the flow equally divided. Calculate the overall conversion, $X_{o v}$ (Figure 7)
(f) A PFR followed by a CSTR (Figure 8).
(g) A CSTR followed by a PFR (Figure 9).
(h) A PFR followed by two CSTRs (Figure 10). Is this arrangement a good arrangement or is there a better one?

Two CSTRs followed by a PFR (Figure 11) yield final conversion of $X_{3}=0.92$.
Two PFRs followed by a CSTR (Figure 12) yield final conversion of $X_{3}=0.97$.

Problem 2

P2-4: The exothermic reaction of stillbene (A) to form the economically important trospophene (B) and methane (C), i.e.,

$$
\mathrm{A} \longrightarrow \mathrm{~B}+\mathrm{C}
$$

Figure 7: Conversion from a CSTR and a PFR in parallel

Figure 8: Conversion from a PFR followed by CSTR

Figure 9: Conversion from a CSTR followed by PFR

Figure 10: Conversion from a PFR followed by two CSTRs

Figure 11: Conversion from two CSTRs followed by a PFR

Figure 12: Conversion from two PFRs followed by a CSTR
was carried out adiabatically and the following data recorded:
Table 1: Problem 2.4 rate data

X	$-r_{A}\left(\mathrm{~mol} / \mathrm{dm}^{3} \mathrm{~min}\right)$
0	1
0.2	1.67
0.4	5
0.45	5
0.5	5
0.6	5
0.8	1.25
0.9	0.91

The entering molar flow rate of A was $300 \mathrm{~mol} / \mathrm{min}$.
(a) What are the PFR and CSTR volumes necessary to achieve 40% conversion?
(b) Over what range of conversions would the CSTR and PFR reactor volumes be identical?
(c) What is the maximum conversion that can be achieved in a $105 \mathrm{dm}^{3}$ CSTR?
(d) What conversion can be achieved if a $72 d m^{3}$ PFR is followed in series by a $24 d m^{3}$ CSTR?
(e) What conversion can be achieved if a $24 d \mathrm{~m}^{3}$ CSTR is followed in a series by a $72 \mathrm{dm} \mathrm{m}^{3} \mathrm{PFR}$?
(f) Plot the conversion and rate of reaction as a function of PFR reactor volume up to a volume of $100 \mathrm{dm}^{3}$.

Solution:

The rate data $\left(-r_{A}\right)$ is given. We need $F_{A 0} /-r_{A}$. Dividing $F_{A 0}=300$ by $-r_{A}$ we get:
Table 2: Processed data for problem 2

X	$-r_{A}$	$F_{A 0} /-r_{A}$
0	1	300
0.2	1.67	179.641
0.4	5	60
0.45	5	60
0.5	5	60
0.6	5	60
0.8	1.25	240
0.9	0.91	329.67

Trying to fit a single cubic spline or a polynomial doesn't work well due to the nature of the data (Figure 13). The data consists of three liniear segments. Therefore, we fit a piecewise linear function using numpy . piecewise. We also use lambda functions to define the linear segments.

```
def piecewise_linear_fit(x, x0, y0, k1, k2, k3):
    | | |
    Piecewise linear function defined by slopes and a constant part.
    x0, y0: Coordinates of the piecewise function's bending points.
    k1, k2, k3: Slopes of the first, second, and third parts.
```


Figure 13: Levenspiel plot of processed data for problem 2-4

```
Note that in this problem,
k1 = -600.0
k2 = 0
k3 = 898.9010989010986
x0 = [0.4, 0.6]
y0 = [60.0, 60.0]
We can call this function as
piecewise_linear_fit(x, *args)
args = ([0.4, 0.6], [60.0, 60.0], -600.0, 0, 898.9010989010986)
"""
return np.piecewise(x,
    [x < x0[0], (x >= x0[0]) & (x <= x0[1]), x > x0[1]],
    [lambda x: k1*x + y0[0] - k1*x0[0],
    lambda x: y0[1],
    lambda x: k3*x + y0[1] - k3*x0[1]])
```

(a) What are the PFR and CSTR volumes necessary to achieve 40% conversion?

From @fig-problem-2a, \$V_\{CSTR\}\$ = 24\.00 \$dm^3\$.
(b) Over what range of conversions would the CSTR and PFR reactor volumes be identical?

Figure 14: Piecewise linear fit processed data for problem 2-4

Figure 15: Reactor volume for CSTR to achieve $\mathrm{X}=0.4$

As the slope of $F_{A 0} /-r_{A} v s$. X line is 0 between 0.4 and 0.6 , the CSTR and PFR volumes over this range would be identical.
(c) What is the maximum conversion that can be achieved in a $105 d \mathrm{~m}^{3}$ CSTR?

Figure 16: Reactor conversion for CSTR with volume $=105 \mathrm{dm}^{3}$
From Figure 16, $X=0.70$.
(d) What conversion can be achieved if a $72 d m^{3}$ PFR is followed in series by a $24 d m^{3}$ CSTR?

From Figure 17, $X_{P F R}=0.40$ and $X_{C S T R}=0.64$.
(e) What conversion can be achieved if a $24 d \mathrm{~m}^{3}$ CSTR is followed in a series by a $72 d \mathrm{~m}^{3}$ PFR?

From Figure 18, $X_{C S T R}=0.40$ and $X_{P F R}=0.91$.
(f) Plot the conversion and rate of reaction as a function of PFR reactor volume up to a volume of $100 \mathrm{dm}^{3}$.

To create this plot (Figure 19), we will need to calculate the volume first for all X as

$$
V=\int_{0}^{x} \frac{F_{A 0}-r_{A}}{d} X
$$

This data is given in Table 3

Figure 17: Reactor conversion for PFR followed by CSTR

Figure 18: Reactor conversion for CSTR followed by PFR

Table 3: Reactor conversion and rate as function fo volume

$V\left(d m^{3}\right)$	X	$-r_{A}$
0	0	1
48	0.2	1.67
72	0.4	5
75	0.45	5
78	0.5	5
84	0.6	5
113.978	0.8	1.25
142.451	0.9	0.91

Figure 19: Reactor conversion and rate as function fo volume

Problem 3

P2-7: The adiabatic exothermic irreversible gas-phase reaction

$$
2 \mathrm{~A}+\mathrm{B} \longrightarrow 2 \mathrm{C}
$$

is to be carried out in a flow reactor for an equimolar feed of A and B. A Levenspiel plot for this reaction is shown in Figure 20.
(a) What PFR volume is necessary to achieve 50% conversion?
(b) What CSTR volume is necessary to achieve 50% conversion?
(c) What is the volume of a second CSTR added in series to the first CSTR (Part b) necessary to achieve an overall conversion of 80% ?
(d) What PFR volume must be added to the first CSTR (Part b) to raise the conversion to 80% ?
(e) What conversion can be achieved in a $6 \times 10^{4} \mathrm{~m}^{3}$ CSTR? In a $6 \times 10^{4} \mathrm{~m}^{3}$ PFR?

Figure $\mathbf{P 2 - 7}$ B \quad Levenspiel plot.
Figure 20: Figure-p2-7b
(f) Think critically to critique the answers (numbers) to this problem.

Solution:

Problem 4

P2.10: The curve shown in Figure 21 is typical of a gas-solid catalytic exothermic reaction carried out adiabatically.
(a) Assuming that you have a fluidized CSTR and a PBR containing equal weights of catalyst, how should they be arranged for this adiabatic reaction? Use the smallest amount of catalyst weight to achieve 80% conversion of A.
(b) What is the catalyst weight necessary to achieve 80% conversion in a fluidized CSTR?
(c) What fluidized CSTR weight is necessary to achieve 40% conversion?
(d) What PBR weight is necessary to achieve 80% conversion?
(e) What PBR weight is necessary to achieve 40% conversion?
(f) Plot the rate of reaction and conversion as a function of PBR catalyst weight, W.

Additional information: FA0 $=2 \mathrm{~mol} / \mathrm{s}$.

Figure P2-10 $\mathbf{B}_{\mathbf{B}}$ Levenspiel plot for an adiabatic exothermic heterogeneous reaction.
Figure 21: Figure P2-10b

Solution:

Digitized graph: (Figure 22)

Figure 22: Levenspiel plot for an adiabatic exothermic heterogeneous reaction.
(a) Assuming that you have a fluidized CSTR and a PBR containing equal weights of catalyst, how should they be arranged for this adiabatic reaction? Use the smallest amount of catalyst weight to achieve 80% conversion of A. (Figure 23)
(b) What is the catalyst weight necessary to achieve 80% conversion in a fluidized CSTR? (Figure 24)
(c) What fluidized CSTR weight is necessary to achieve 40% conversion? (Figure 25)
(d) What PBR weight is necessary to achieve 80% conversion? (Figure 26)
(e) What PBR weight is necessary to achieve 40% conversion? (Figure 27)
(f) Plot the rate of reaction and conversion as a function of PBR catalyst weight, W. (Data table: Table 4; Plots: Figure 28)

Table 4: Reactor conversion and rate as function fo volume

$V\left(d m^{3}\right)$	X	$-r_{A}$
0.0730885	0.00122266	0.0334255
1.597	0.02795	0.0368764
3.97751	0.0756876	0.0436557
6.4248	0.134583	0.0531844
8.88462	0.207988	0.0670574
11.6107	0.313744	0.089225
14.0622	0.436315	0.108972
16.2747	0.55899	0.109126

Table 4: Reactor conversion and rate as function fo volume

$V\left(d m^{3}\right)$	X	$-r_{A}$
18.6969	0.681754	0.0921045
21.4901	0.794571	0.0699448
23.7561	0.865033	0.0549146
25.4624	0.907618	0.0450597
27.1073	0.941305	0.037535

Figure 23: Levenspiel plot for an adiabatic exothermic heterogeneous reaction.

Figure 24: Catalyst weight for 80% conversion in CSTR

Figure 25: Catalyst weight for 40% conversion in CSTR

Figure 26: Catalyst weight for 80% conversion in PBR

Figure 27: Catalyst weight for 40% conversion in PBR

Figure 28: Reactor conversion and rate as function fo volume

