Workshop 02: Conversion and reactor sizing Lecture notes for chemical reaction engineering

Ranjeet Utikar

2024-02-28

Try following problems from Fogler 5e(Fogler 2016).
P2-3, P2-4, P2-7, P2-10.
We will go through some of these problems in the workshop.
Specimen code
A collab notebook that contains specimen code can be obtained by clicking on link below. Workshop 02 Levenspeil Plots and Reactor sizing - Help

1. P2-3: You have two CSTRs and two PFRs, each with a volume of $1.6 \mathrm{~m}^{3}$. Use Figure 1 to calculate the conversion for each of the reactors in the following arrangements.
(a) Two CSTRs in series.
(b) Two PFRs in series.
(c) Two CSTRs in parallel with the feed, $F_{A 0}$, divided equally between the two reactors.
(d) Two PFRs in parallel with the feed divided equally between the two reactors.
(e) A CSTR and a PFR in parallel with the flow equally divided. Calculate the overall conversion, $X_{o v}$

$$
X_{o v}=\frac{F_{A 0}-F_{A, C S T R}-F_{A, P F R}}{F_{A 0}}
$$

with

$$
F_{A, C S T R}=\frac{F_{A 0}}{2}-\frac{F_{A 0}}{2} X_{C S T R}
$$

and

$$
F_{A, P F R}=\frac{F_{A 0}}{2}\left(1-X_{P F R}\right)
$$

(f) A PFR followed by a CSTR.
(g) A CSTR followed by a PFR.
(h) A PFR followed by two CSTRs. Is this arrangement a good arrangement or is there a better one? The data from Figure 1 is provided in file workshop-02-problem-1-data.csv

Figure 2-2B Levenspiel plot of processed data 2.

Figure 1: Figure-2-2b
2. P2-4: The exothermic reaction of stillbene (A) to form the economically important trospophene (B) and methane (C), i.e.,

$$
A \longrightarrow B+C
$$

was carried out adiabatically and the following data recorded:

Table 1: Problem 2.4 rate data

X	$r_{A}\left(\mathrm{~mol} / \mathrm{dm}^{3} \mathrm{~min}\right)$
0	1
0.2	1.67
0.4	5
0.45	5
0.5	5
0.6	5
0.8	1.25
0.9	0.91

The entering molar flow rate of A was $300 \mathrm{~mol} / \mathrm{min}$.
(a) What are the PFR and CSTR volumes necessary to achieve 40% conversion?
(b) Over what range of conversions would the CSTR and PFR reactor volumes be identical?
(c) What is the maximum conversion that can be achieved in a $105 \mathrm{dm}^{3}$ CSTR?
(d) What conversion can be achieved if a $72 d m^{3}$ PFR is followed in series by a $24 d m^{3}$ CSTR?
(e) What conversion can be achieved if a $24 d \mathrm{~m}^{3}$ CSTR is followed in a series by a $72 \mathrm{dm} \mathrm{m}^{3} \mathrm{PFR}$?
(f) Plot the conversion and rate of reaction as a function of PFR reactor volume up to a volume of $100 \mathrm{dm}^{3}$.

The data from Table 1 is provided in file workshop-02-problem-2.csv
3. P2-7: The adiabatic exothermic irreversible gas-phase reaction

$$
2 \mathrm{~A}+\mathrm{B} \longrightarrow 2 \mathrm{C}
$$

is to be carried out in a flow reactor for an equimolar feed of A and B. A Levenspiel plot for this reaction is shown in Figure 2.
(a) What PFR volume is necessary to achieve 50% conversion?
(b) What CSTR volume is necessary to achieve 50% conversion?
(c) What is the volume of a second CSTR added in series to the first CSTR (Part b) necessary to achieve an overall conversion of 80% ?
(d) What PFR volume must be added to the first CSTR (Part b) to raise the conversion to 80% ?
(e) What conversion can be achieved in a $6 \times 10^{4} \mathrm{~m}^{3}$ CSTR? In a $6 \times 10^{4} \mathrm{~m}^{3} \mathrm{PFR}$?
(f) Think critically to critique the answers (numbers) to this problem.
4. P2.10: The curve shown in Figure 3 is typical of a gas-solid catalytic exothermic reaction carried out adiabatically.
(a) Assuming that you have a fluidized CSTR and a PBR containing equal weights of catalyst, how should they be arranged for this adiabatic reaction? Use the smallest amount of catalyst weight to achieve 80% conversion of A.
(b) What is the catalyst weight necessary to achieve 80% conversion in a fluidized CSTR?
(c) What fluidized CSTR weight is necessary to achieve 40% conversion?
(d) What PBR weight is necessary to achieve 80% conversion?
(e) What PBR weight is necessary to achieve 40% conversion?
(f) Plot the rate of reaction and conversion as a function of PBR catalyst weight, W.

Figure $\mathbf{P 2 - 7}$ B \quad Levenspiel plot.

Figure 2: Figure-p2-7b

Figure $\mathbf{P 2 - 1 0}_{\mathbf{B}}$ Levenspiel plot for an adiabatic exothermic heterogeneous reaction.

Figure 3: Figure P2-10b

Additional information: $\mathrm{FAO}=2 \mathrm{~mol} / \mathrm{s}$.
The data from Figure 3 is provided in file workshop-02-problem-4.csv
Fogler, H. Scott. 2016. Elements of Chemical Reaction Engineering. Fifth edition. Boston: Prentice Hall.

