Chemical Reaction Engineering
Industrial reactions at high temperature
Mass transfer
Molar flux with no diffusion
W_{Az} = \frac{C_A \upsilon}{A_C} = \frac{F_{Az}}{A_C}
\frac{\text{mol}}{\text{m}^2 \cdot \text{s}} \qquad \frac{\text{mol}}{\cancel{\text{m}^3}} \cdot \frac{\cancel{\text{m}^3}}{\text{s}} \cdot \frac{1}{\text{m}^2}
Diffusion
W_A = i W_{Ax} + j W_{Ay} + k W_{Az} \qquad \text{[Rectangular coordinates]}
\Rightarrow Need to develop mole balance that incorporates both diffusion and reaction.
\begin{aligned} & \left[ \text{molar flow rate in} \right]_z -& \left[ \text{molar flow rate out} \right]_{z+\Delta z} \\ +& \left[ \text{molar flow rate in} \right]_y -& \left[ \text{molar flow rate out} \right]_{y+\Delta y} \\ +& \left[ \text{molar flow rate in} \right]_x -& \left[ \text{molar flow rate out} \right]_{x+\Delta x} \\ +& \left[ \text{rate of generation} \right] \\ =& \left[ \text{rate of accumulation} \right] \end{aligned}
\begin{aligned} & \Delta x \Delta y W_{Az} \bigg|_z & -& \Delta x \Delta y W_{Az} \bigg|_{z+\Delta z} & +\Delta x \Delta z W_{Ay} \bigg|_y & -& \Delta x \Delta z W_{Ay} \bigg|_{y+\Delta y} \\ & +\Delta z \Delta y W_{Ax} \bigg|_x & -& \Delta z \Delta y W_{Ax} \bigg|_{x+\Delta x} & +r_A \Delta x \Delta y \Delta z & =& \Delta x \Delta y \Delta z \frac{\partial C_A}{\partial t} \end{aligned}
Differential Form:
Dividing by \Delta x \Delta y \Delta z and taking the limit as they go to zero:
\frac{\partial W_{Ax}}{\partial x} + \frac{\partial W_{Ay}}{\partial y} + \frac{\partial W_{Az}}{\partial z} + r_A = \frac{\partial C_A}{\partial t}
W_A = J_A + B_A
W_A = J_A + y_A \left( W_A + W_B \right) = J_A + C_A U
Describes how molar diffusive flux is related to the concentration gradient.
Fourier’s Law (thermal conduction)
q = -k_t \nabla T;\quad k_t: \text{thermal conductivity}
\nabla = i \frac{\partial}{\partial x} + j \frac{\partial}{\partial y} + k \frac{\partial}{\partial z}
For Mass Transfer: Fick’s Law
J_A = -D_{AB} \nabla C_A
W_A = -D_{AB} \nabla C_A + C_A U
In One Dimension
W_{Az} = -D_{AB} \frac{dC_A}{dz} + C_A U_z
A diffusing in B
W_A = -D_{AB} \nabla C_A + y_A (W_A + W_B)
Equimolar Counter Diffusion (EMCD)
W_A = -W_B \qquad W_A = J_A = -D_{AB} \nabla C_A
Species A Diffusing Through Stagnant Species B ( W_B = 0; W_A = J_A + y_A W_A )
W_A = \frac{J_A}{1 - y_A} = -\frac{D_{AB} \nabla C_A}{1 - y_A}; \qquad W_A = -D_{AB} C \nabla \ln (1 - y_A)
Bulk Flow of A \gg Molecular Diffusion (plug flow model)
W_A = B_A = y_A (W_A + W_B) = C_A U
Small Bulk Flow J_A \gg B_A
W_A = -D_{AB} \nabla C_A = J_A
Knudsen Diffusion
Occurs in porous catalyst where diffusing molecule collides more often with catalyst walls/pore walls than with each other.
W_A = J_A = -D_k \nabla C_A
D_k: Knudsen diffusivity
Diffusion and convective transport: F_{Az} = W_{Az} A_C
W_{Az} = -D_{Az} \frac{dC_A}{dz} + C_A U_z
F_{Az} = W_{Az} A_C = \left[ -D_{Az} \frac{dC_A}{dz} + C_A U_z \right] A_C
D_{AB} \left[ \frac{\partial^2 C_A}{\partial x^2} + \frac{\partial^2 C_A}{\partial y^2} + \frac{\partial^2 C_A}{\partial z^2} \right] - u_x \frac{\partial C_A}{\partial x} - u_y \frac{\partial C_A}{\partial y} - u_z \frac{\partial C_A}{\partial z} + r_A = \frac{\partial C_A}{\partial t}
D_{AB} \frac{\partial^2 C_A}{\partial z^2} - U_z \frac{\partial C_A}{\partial z} + r_A = \frac{\partial C_A}{\partial t}
Boundary conditions
Concentration at boundary: @ z = 0 \rightarrow C_A = C_{A0}; @ z = L \rightarrow \frac{dC_A}{dz} = 0
Specify flux at the boundary
No mass transfer W_A = 0
Molar flux at surface = rate of reaction at surface
W_A|_{surface} = -r''|_{surface}
Molar flux to boundary = convective transport across boundary layer
W_A|_{boundary} = k_c (C_{Ab} - C_{As})
Phase | cm^2/s | m^2/s | Temperature and pressure dependences |
---|---|---|---|
Gas | |||
- Bulk | 10^{-1} | 10^{-5} | D_{AB}(T_2, P_2) = D_{AB}(T_1, P_1) \frac{P_1}{P_2} \left( \frac{T_2}{T_1} \right)^{1.75} |
- Knudsen | 10^{-2} | 10^{-6} | D_{AB}(T_2) = D_{A}(T_1) \left( \frac{T_2}{T_1} \right)^{1/2} |
Liquid | 10^{-5} | 10^{-9} | D_{AB}(T_2) = D_{AB}(T_1) \frac{\mu_1}{\mu_2} \left( \frac{T_2}{T_1} \right) |
Solid | 10^{-9} | 10^{-13} | D_{AB}(T_2) = D_{AB}(T_1) \exp \left[ \frac{E_D}{R} \left( \frac{T_2 - T_1}{T_1 T_2} \right) \right] |
Flow Past a Single Catalytic Pellet
Hydrodynamic Boundary Layer: Distance from solid object to where the fluid velocity is 99% of the bulk velocity U_0.
Mass Transfer Boundary Layer: Distance at which concentration of diffusing species is 99% of the bulk concentration.
\begin{align*} &\text{In} &-& \text{Out} &+& \text{Generation} &=& \text{Accumulation} \\ &W_{Az}\big|_z &-& W_{Az}\big|_{z + \Delta z} &+& 0 &=& 0 \end{align*}
Dividing by \Delta z and taking the limit as \Delta z \to 0 \frac{dW_{Az}}{dz} = 0
For diffusion through stagnant film at dilute concentrations,
J_A \gg y_A (W_A + W_B)
W_{Az} = -D_{AB} \frac{dC_A}{dz} \quad \text{(also for EMCD)}
\frac{d^2C_A}{dz^2} = 0
Integrating twice C_A = k_1z + k_2 \implies C_{As} = k_2 \quad \text{and} \quad \left( \frac{C_{Ab} - C_{As}}{\delta} \right) = k_1
Substituting BCs
C_A = C_{As} + \left( C_{Ab} - C_{As} \right) \frac{z}{\delta}
W_{Az}\bigg|_{\delta} = -D_{AB} \frac{dC_A}{dz} \bigg|_{\delta}
W_{Az} = \frac{D_{AB}}{\delta} \left[ C_{Ab} - C_{As} \right]
k_c = \frac{D_{AB}}{\delta}
W_{Az} = k_c (C_{Ab} - C_{As})
W_{Az} = \text{Flux} = \frac{\text{Driving force}}{\text{Resistance}} = \frac{C_{Ab} - C_{As}}{\left(\frac{1}{k_c}\right)}
The mass transfer coefficient is found by experimentation
Correlations analogous to what one finds for a heat transfer coefficient.
Sh = 2 + 0.6 Re^{1/2} Sc^{1/3} \qquad \text{ Frössling correlation }
Sh = \frac{k_c L}{D_{AB}} ;\quad Sc = \frac{\nu}{D_{AB}} = \frac{\mu}{\rho D_{AB}} ;\quad Re = \frac{UL}{\nu} = \frac{UL\rho}{\mu}
\left[ \text{Molar rate in} \right] - \left[ \text{Molar rate out} \right] \\ + \left[ \text{Molar rate of generation} \right] = \left[ \text{Molar rate of accumulation} \right]
F_{Az} \bigg|_z - F_{Az} \bigg|_{z+\Delta z} + r''_A c (A_c \Delta z) = 0
-\frac{1}{A_c} \left( \frac{dF_{Az}}{dz} \right) + r''_A c = 0
F_{Az} = A_c W_{Az} = (J_{Az} + B_{Az}) A_c
In almost all situations involving flow in packed-bed reactors, the amount of material transported by diffusion or dispersion in the axial direction is negligible compared with that transported by convection (i.e., bulk flow)
Neglecting dispersion as J_{Az} \ll B_{Az}
F_{Az} = A_c W_{Az} = A_c B_{Az} = U_c A_c
-\frac{d(CU)}{dz} + r''_A c = 0
For constant superficial velocity
-U\frac{dC}{dz} + r''_A c = 0
The boundary condition at the external surface is
-r''_A = W_{Ar} = k_c (C_A - C_{As})
-U\frac{dC}{dz} - k_c a_c (C_A - C_{As}) = 0
-U\frac{dC}{dz} = k_c a_c (C_A - C_{As})
In most mass transfer-limited reactions, the surface concentration is negligible with respect to the bulk concentration (C_A \gg C_{As})
-U\frac{dC}{dz} = k_c a_c C_A
At z = 0, C_A = C_{A0}
\frac{C_A}{C_{A0}} = \exp \left( - \frac{k_c a_c}{U} z \right ) ;\qquad \ln \frac{1}{1-X} = \frac{k_c a_c}{U} L
-\frac{dW_{Az}}{dz} + r_A = 0
W_{Az} = -D_{AB} \frac{dC_A}{dz}
D_{AB} \frac{d^2 C_A}{dz^2} + r_A = 0
Applications
Effective diffusivity
D_e = \frac{D_{AB} \phi_p \sigma_c}{\tilde{\tau}} ;\qquad W_{Az} = -D_{e} \frac{dC_A}{dz}
The effective diffusivity accounts for the fact that:
Consider irreversible isomerization reaction \ce{A -> B}
The reaction occurs on the surface of pore walls within a spherical pellet of radius R.
Assumptions
\begin{align*} (\text{In at } r) &-& (\text{Out at } r + \Delta r) &+& (\text{Generation within } \Delta r) &=& 0 \\ (W_{Ar} 4 \pi r^2 |_r) &-& (W_{Ar} 4 \pi r^2 |_{ r + \Delta r }) &+& (r'_A \rho_c 4 \pi r_m^2 \Delta r) &=& 0 \end{align*}
\frac{d(W_{Ar}r^2)}{dr} - r'_A \rho_c r^2 = 0
W_{Ar} = -D_{e} \frac{dC_A}{dr}
\frac{-D_e (dC_A/dr) r^2}{dr} - r^2 \rho_c r'_A = 0
Reaction rate {r'_A = k_n C_A^n}
\frac{d^2 C_A}{dr^2} + \frac{2}{r} \left( \frac{dC_A}{dr} \right) - \frac{k_n}{D_e} C_A^n = 0
Boundary conditions
Dimensionless form
\psi = \frac{C_A}{C_{As}}; \quad \lambda = \frac{r}{R}
Boundary conditions
\frac{d^2 \psi}{d \lambda^2} + \frac{2}{\lambda} \left( \frac{d \psi}{d \lambda} \right) - \phi^2 \psi^n = 0
\phi_n^2 = \frac{k_n R^{2} C_{As}^{n-1}}{D_e} = \frac{k_n R C_{As}^n}{D_e \left( \frac{C_{As} - 0}{R} \right)} \quad = \frac{\text{``a'' surface reaction rate}}{\text{``a'' diffusion rate}}
\psi = \frac{C_A}{C_{As}} = \frac{1}{\lambda} \left( \frac{ \sinh \phi_1 \lambda }{ \sinh \phi_1 } \right )
\eta = \frac{\text{Actual overall rate of reaction}}{ \begin{array}{c} \text{Rate of reaction that would result if entire} \\ \text{interior surface were exposed to the external} \\ \text{pellet surface conditions } C_{As}, T_s \end{array} }
\eta = \frac{-r_A}{-r_{As}} = \frac{-r'_A}{-r'_{As}} = \frac{-r''_A}{-r''_{As}}
\eta = \frac{3}{\phi_1^2} \left( \phi_1 \coth \phi_1 -1 \right)
If \phi_1 < 2: \eta \approx \frac{3}{\phi_1^2}[\phi_1 -1]
If \phi_1 > 20: \eta \approx \frac{3}{\phi_1^2}
Reaction rate per unit mass of catalyst -r'_A = k_c a_c C_A
k_c \propto \frac{U^{1/2}}{d_p^{1/2}} ; \qquad a_c \propto \frac{1}{d_p}
For external mass transfer–limited reaction
-r'_A \propto \frac{U^{1/2}}{d_p^{3/2}}
Type of Limitation | Velocity | Particle Size | Temperature |
---|---|---|---|
External diffusion | U^{1/2} | (d_p)^{-3/2} | \approx Linear |
Internal diffusion | Independent | (d_p)^{-1} | Exponential |
Surface reaction | Independent | Independent | Exponential |
Chemical Reaction Engineering