Chemical Reaction Engineering
Mole balance
\frac{dX_A}{dV} = \frac{-r_A}{F_{A0}}
Rate law
-r_A = kC_A = -k_0 \exp \left[ \frac{E}{R} \left( \frac{1}{T_1} - \frac{1}{T} \right)\right] C_A
Stoichiometry
C_A = C_{A0}(1-X_A)
Combine: Put F_{A0} in terms of C_{A0}
\frac{dX}{dV} = -k_0 \exp \left[ \frac{E}{R} \left( \frac{1}{T_1} - \frac{1}{T} \right)\right] \frac{(1 - X_A)}{\upsilon_0}
Evaluate
We cannot solve this equation because both X, and T vary with V and we don’t have X either as a function of V or T. We need one more equation
\Rightarrow The energy balance
System
A system is any bounded portion of the universe, moving or stationary, which is chosen for the application of the various thermodynamic equations.
Closed system: no mass crosses boundaries
\begin{aligned} \text{Change in} & & \text{Heat flow} & & \text{Work done by} \\ \text{total energy} &\;\; = & \text{to} \qquad &\;\; - & \text{by the system} \\ \text{of the system} & & \text{the system} & & \text{on the surroundings} \end{aligned}
d \hat{E} = \delta Q - \delta W
\begin{aligned} \text{Rate of accumulation} & & & & \text{Work done} & & \text{Energy added} & & \text{Energy leaving} \\ \text{of energy} &\;\; = & \text{Heat in} &\;\; - & \text{by} \qquad &\;\; + & \text{to the system} &\;\; - & \text{the system by} \\ \text{in the system} & & & & \text{the system} & & \text{by mass flow in} & & \text{mass flow out} \end{aligned}
\frac{d \hat{E}_{sys}}{dt} = \dot Q - \dot W + \left. \sum_{i=1}^{N} E_i F_i \right|_{in} - \left. \sum_{i=1}^{N} E_i F_i \right|_{out}
\dot{W} =\overbrace{ -\left.\sum_{i=1}^n F_i P \tilde V_i \right|_{in} +\left.\sum_{i=1}^n F_i P \tilde V_i \right|_{out}}^{\color{RoyalBlue}{\text{flow work}}} +\underbrace{\dot W_s}_{\color{RoyalBlue}{\text{shaft work}}}
P: Pressure; \tilde V_i: Specific molar volume of species i
In most instances, the flow-work term is combined with those terms in the energy balance that represent the energy exchange by mass flow across the system boundaries.
\frac{d \hat{E}_{sys}}{dt} = \dot Q - \dot W_s + \left. \sum_{i=1}^{N} F_i (E_i + P \tilde V_i) \right|_{in} - \left. \sum_{i=1}^{N} F_i (E_i + P \tilde V_i) \right|_{out}
E_i = U_i + \frac {u_i^2} {2} + g z_i + \text{other}
Generally in chemical reactors, U_i \gg {u_i^2}/{2} + g z_i + \text{other}
E_i \approx U_i: Internal energy is major contributor to energy term.
\frac{d \hat{E}_{sys}}{dt} = \dot Q - \dot W_s + \left. \sum_{i=1}^{N} F_i (U_i + P \tilde V_i) \right|_{in} - \left. \sum_{i=1}^{N} F_i (U_i + P \tilde V_i) \right|_{out}
\frac{d \hat{E}_{sys}}{dt} = \dot Q - \dot W_s + \sum_{i=1}^{N} F_{i0} H_{i0} - \sum_{i=1}^{N} F_{i} H_{i}
Consider reaction
\ce{aA + bB -> cC + dD}
\ce{A + \frac{b}{a} B -> \frac{c}{a} C + \frac{d}{a} D}
F_i = F_{A0}(\Theta_i + \nu_i X)
\Theta_i = \frac{F_{i0}}{F_{A0}}
\nu_i: Stoichiometric coefficient
F_A = F_{A0}(1 - X)
F_B = F_{A0}(\Theta_B - \frac{b}{a} X)
F_C = F_{A0}(\Theta_C + \frac{c}{a} X)
F_D = F_{A0}(\Theta_D + \frac{d}{a} X)
F_I = F_{A0}(\Theta_I)
\dot Q - \dot W_s + \sum_{i=1}^{N} F_{i0} H_{i0} - \sum_{i=1}^{N} F_{i} H_{i} = 0
Lets evaluate
\sum_{i=1}^{N} F_{i0} H_{i0} - \sum_{i=1}^{N} F_{i} H_{i}
\begin{aligned} \sum_{i=1}^{N} F_{i0} H_{i0} - \sum_{i=1}^{N} F_{i} H_{i} = & \;\; F_{A0}\left[ (H_{A0} - H_A) + (H_{B0} - H_B) \Theta_B \right. \\ & \left. + (H_{C0} - H_C) \Theta_C + (H_{D0} - H_D) \Theta_D + (H_{I0} - H_I) \Theta_I \right] \\ &\;\; - \underbrace{ \color{RoyalBlue}{ \left[ \frac{d}{a} H_D + \frac{c}{a} H_C - \frac{b}{a} H_B - H_A \right] }}_{\Delta H_{Rx} \text{at temperature T}} F_{A0} X \\ = &\;\; F_{A0} \sum_{i=1}^{N} (H_{i0} - H_i) - \Delta H_{Rx} F_{A0} X \end{aligned}
\dot Q - \dot W_s + F_{A0} \sum_{i=1}^{N} \Theta_i (H_{i0} - H_i) - \Delta H_{Rx} F_{A0} X = 0
Specific enthalpy of species i at a particular temperature and pressure is given by
H_i = H_i^\circ(T_R) + \Delta H_{Qi}
Ignoring enthalpy of mixing
H_i^\circ(T_R): Enthalpy of formation of species i at reference temperature T_R
\Delta H_{Qi}: the change in enthalpy that results when the temperature is raised from T_R, to some temperature T
In absence of phase change, \Delta H_{Qi} = \int_{T_1}^{T_2} C_{P_i} dT
The heat capacity at temperature T is frequently expressed as a quadratic function of temperature
C_{P_i} = \alpha_i + \beta_i T + \gamma_i T^2
H_i = H_i^\circ(T_R) + \int_{T_1}^{T_2} C_{P_i} dT
Consider constant heat capacity: \qquad \int_{T_{i0}}^{T} C_{P_i} dT = C_{P_i} \left[ T - T_{i0}\right]
H_{i0} = H_i^\circ(T_R) + C_{P_i} \left[ T_{i0} - T_{R} \right]
H_{i} = H_i^\circ(T_R) + C_{P_i} \left[ T_{i} - T_{R} \right]
H_{i0} - H_i = \left( \cancel{H_i^\circ(T_R)} + C_{P_i} \left[ T_{i0} - \cancel{T_{R}}\right] \right) - \left( \cancel{H_i^\circ(T_R)} + C_{P_i} \left[ T_{i} - \cancel{T_{R}}\right] \right)
H_{i0} - H_i = C_{P_i} \left[ T_{i0} - T_{i}\right] = - C_{P_i} \left[ T_{i} - T_{i0}\right]
\dot Q - \dot W_s - F_{A0} \sum_{i=1}^{N} \Theta_i C_{P_i} \left[ T_{i} - T_{i0}\right] - \Delta H_{Rx} F_{A0} X = 0
For reaction: \ce{aA + bB -> cC + dD}
Heat of reaction:
\Delta H_{Rx}(T) = \frac{d}{a} H_D (T) + \frac{c}{a} H_C (T) - \frac{b}{a} H_B (T) - H_A (T)
H_i = C_{P_i} \left[ T - T_{R}\right]
\begin{aligned} \Delta H_{Rx}(T) = & & \left[ \underbrace{ \frac{d}{a} H_D^\circ (T_R) + \frac{c}{a} H_C^\circ (T_R) - \frac{b}{a} H_B^\circ (T_R) - H_A^\circ (T_R) }_{\color{RoyalBlue}{\Delta H_{Rx}^\circ \text{ at } T_R}} \right] & + & \left[ \underbrace{ \frac{d}{a} C_{P_D} + \frac{c}{a} C_{P_C} - \frac{b}{a} C_{P_B} - C_{P_A} }_{\color{RoyalBlue}{\Delta C_{P}}} \right] \left(T - T_R \right) \end{aligned}
\Delta H_{Rx}(T) = \Delta H_{Rx}^\circ(T_R) + \Delta C_{P}(T - T_R)
\dot Q - \dot W_s - F_{A0} \sum_{i=1}^{N} \Theta_i C_{P_i} \left[ T_{i} - T_{i0}\right] - \left[ \Delta H_{Rx}^\circ(T_R) + \Delta C_{P}(T - T_R) \right] F_{A0} X = 0
- F_{A0} \sum \Theta_i C_{P_i} \left[ T_{i} - T_{0}\right] - \left[ \Delta H_{Rx}^\circ(T_R) + \Delta C_{P}(T - T_R) \right] F_{A0} X = 0
X_{EB} = \frac { \sum \Theta_i C_{P_i} \left[ T_{i} - T_{0}\right] } {- \Delta H_{Rx}^\circ (T_R) + \Delta C_{P}(T - T_R) }
X_{EB} = \frac { \sum \Theta_i C_{P_i} \left[ T_{i} - T_{0}\right] } {- \Delta H_{Rx}^\circ (T_R) + \Delta C_{P}(T - T_R) }
T = T_0 + \frac{ \left( -\Delta H^\circ_{Rx} \right) X_{EB}}{\sum \Theta_i C_{Pi}}
This equation applies to CSTR, PFR, PBR, and Batch reactors. It gives us the explicit relationship between X and T needed to be used in conjunction with the mole balance to solve a large variety of chemical reaction engineering problems.
The highest conversion that can be achieved in reversible reactions is the equilibrium conversion. For endothermic reactions, the equilibrium conversion increases with increasing temperature up to a maximum of 1.0. For exothermic reactions, the equilibrium conversion decreases with increasing temperature.
Energy balance over volume \Delta V
\Delta \dot Q + \sum F_i H_i |_V - \sum F_i H_i |_{V + \Delta V} = 0
Heat flow into the reactor \Delta \dot Q
\Delta \dot Q = U \Delta A (T_a - T) = Ua \Delta V (T_a - T)
For tubular reactor a = 4/D
Ua (T_a - T) - \frac {d\sum F_i H_i}{dV} = 0
Expanding Ua (T_a - T) - \sum \frac {dF_i}{dV} H_i - \sum F_i \frac {dH_i}{dV} = 0
Mole balance: \frac{dF_i}{dV} = r_i also, \frac{dH_i}{dV} = C_{P_i} \frac{dT}{dV}
\frac{dT}{dV} = \frac{ \overbrace{r_A \Delta H_{Rx}(T)}^{\color{black}{\text{Heat generated, } Q_g }} - \overbrace{Ua (T - T_a)}^{\color{black}{\text{Heat removed,} Q_r }} }{ \Sigma_j^{n} F_j C_{P_j} }
Q_g = r_A \Delta H_{Rx}(T)
positive for exothermic reactions; negative for endothermic reactions
When Q_g > Q_r: Temperature will increase as the volume increases
When Q_g < Q_r: Temperature will decrease as the volume increases
For multiple reactions
Q_g = \sum_i^{n_{rxn}} r_i \Delta H_{Rx,i}(T)
The heat-transfer fluid will be a coolant for exothermic reactions and a heating medium for endothermic reactions.
If the flow rate of the heat-transfer fluid is sufficiently high with respect to the heat released (or absorbed) by the reacting mixture, then the heat-transfer fluid temperature will be virtually constant along the reactor. For all other cases, we need to write energy balance for the heat transfer fluid.
\begin{aligned} \text{Rate of energy} & & \text{Rate of energy} & & \text{Rate of heat added} & & \\ \text{in at } V & \;\; - & \text{out at } V + \Delta V & \;\; + & \text{by conduction through} & \;\; = & 0 \\ & & & & \text{the inner wall} & & \end{aligned}
\dot m_C H_C |_V - \dot m_C H_C |_{ V + \Delta V } + \underbrace{U a (T - T_a) \Delta V}_{\color{RoyalBlue}{\text{Cocurrent flow}}} = 0
\frac{dT_a}{dV} = \frac{U a (T - T_a)} { \dot m_C C_{P_C} }
Steady state energy balance
\dot{Q} - \dot{W}_s - F_{A0}\sum \theta_i C_{P,i} (T - T_{i0}) - [\Delta H^{\circ}_{Rx} (T_{Rx}) + \Delta C_{P} (T - T_{Rx})] F_{A0}X = 0
Shaft work, i.e., the work done by the stirrer or mixer in the CSTR on the reacting fluid inside the CSTR.
As \dot W_s: work done by the system on the surroundings is positive, the CSTR stirrer work will be a negative number.
As F_{A0} X = -r_A V
\dot{Q} - \dot{W}_s - F_{A0}\sum{\theta_i C_{P,i}(T - T_{i0})} + (r_A V)(\Delta H_{Rx}) = 0
A CSTR’s uniform temperature doesn’t ensure isothermal conditions; for that, the incoming feed must match the reactor’s internal temperature.
Except for processes with highly viscous fluids, the work done by the mixer is typically small enough to ignore.
Rate of energy in by flow:
\dot m_c C_{P,c} (T_{a1} - T_R)
Rate of energy out by flow:
\dot m_c C_{P,c} (T_{a2} - T_R)
Rate of heat transfer from exchanger to reactor:
\frac{UA(T_{a1} - T_{a2})}{\ln{\left[\frac{(T - T_{a1})} {(T - T_{a2})}\right]}}
\begin{aligned} \text{Rate of} & & \text{Rate of} & & \text{Rate of} & & \\ \text{energy} &\;\; - & \text{energy} &\;\; - & \text{heat transfer} &\;\; = & \text{0} \\ \text{in} & & \text{out} & & \text{from exchanger} & & \\ \text{by flow} & & \text{by flow} & & \text{to reactor} & & \end{aligned}
\dot{Q} = \dot{m}_c C_{P,c} (T_{a1} - T_{a2}) = \frac{UA (T_{a1} - T_{a2})} {\ln\left(\frac{T - T_{a1}}{T - T_{a2}}\right)}
T_{a2} = T - (T - T_{a1}) \exp \left( \frac{-UA}{\dot{m}_c C_{P,c}} \right)
\dot{Q} = \dot{m}_c C_{P,c} \left( T_{a1} - T \right) \left[ 1 - \exp \left( \frac{-UA}{\dot{m}_c C_{P,c}} \right) \right]
For very large \dot m_c
\dot{Q} = U A (T_a - T)
Ignoring \dot W_s
\frac{UA}{F_{A0}} (T_a - T) - \sum \theta_i C_{P,i} (T - T_0) - \Delta H^{\circ}_{Rx} X = 0
Solving for X
X = \frac{\frac{UA}{F_{A0}} (T - T_a) + \sum \theta_i C_{P,i} (T - T_0)} {-\Delta H^{\circ}_{Rx} (T_R)} \tag{1}
Couple Equation 1 with the mole balance equation V = \frac{F_{A0}X}{-r_A (X, T)} to design CSTR
Rearranging
X = \frac{C_{P,o} (1 + \kappa) (T - T_c)}{-\Delta H^{\circ}_{Rx}} \quad \text{and} \quad T = T_c + \frac{(-\Delta H^{\circ}_{Rx})(X)}{C_{P,o}(1 + \kappa)}
\text{Where} \quad C_{P,o} = \sum \theta_i C_{P,i} \quad \text{,} \quad \kappa = \frac{UA}{F_{A0} C_{P,o}} \quad \text{,and} \quad T_c = \frac{\kappa T_a + T_0}{1 + \kappa}
Chemical Reaction Engineering