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Determining the Rate Law

The liquid-phase reaction of triphenyl methyl chloride (trityl) (A) and methanol (B)

(C4Hs),CCl + CH,0H — (C,Hs),COCH, + HCI

A+B——C+D

was carried out in a batch reactor at 25°C in a solution of benzene and pyridine in an excess of
methanol C'zy = 0.5 ;”n% (We need to point out that this batch reactor was purchased at the
Sunday market in Rijca, Jofostan.) Pyridine reacts with HCI, which then precipitates as pyridine
hydro-chloride thereby making the reaction irreversible. The reaction is first order in methanol.
The concentration of triphenyl methyl chloride (A) was measured as a function of time and is shown

below (Table 1)

Table 1: Raw data

t (min) C 4 (mol/dm?)

0 0.05
50 0.038
100 0.0306
150 0.0256
200 0.0222
250 0.0195
300 0.0174

1. Determine the reaction order with respect to triphenyl methyl chloride.

2. In a separate set of experiments, the reaction order wrt methanol was found to be first order.
Determine the specific reaction-rate constant.



@ solution

Part (1) Find the reaction order with respect to trityl.
Step 1 Postulate a rate law.
—r, = kCqC (1)
A= RU LB

Step 2 Process your data in terms of the measured variable, which in this case is C4.
Step 3 Look for simplifications. Because the concentration of methanol is 10 times the initial
concentration of triphenyl methyl chloride, its concentration is essentially constant

Substituting for C'p in Equation 1
—r 4 = kC,CS = K CF
"a=Fkrpoba = A

Step 4 Apply the CRE algorithm.
Mole Balance

dN
i =V
Rate Law:
_TA = k/ C:X
Stoichiometry: Liquid V' =V},
N
C,==2
AT
Combine: Mole balance, rate law, and stoichiometry
dCy
_WA _ poa 2
7 i (2)

Evaluate: Taking the natural log of both sides of Equation 2

dt

The slope of a plot of In[—dC  /dt] versus In C 4 will yield the reaction order a with respect to
triphenyl methyl chloride (A)

In [—%] =Ink"+alnCy,




import numpy as np
from scipy.stats import linregress
import matplotlib.pyplot as plt

# Data
CBO =0.5 # mol/dm~3

t = np.array([0, 50, 100, 150, 200, 250, 300])
C_A = np.array([0.05, 0.038, 0.0306, 0.0256, 0.0222, 0.0195, 0.0174])

C_A0 = C_A[0]

# fit polynomial to the data
coefficients = np.polyfit(t, C_A, deg=4)
polynomial = np.polyld(coefficients)

t_fit = np.linspace(t.min(), t.max(), 100)
ca_fit = polynomial(t_fit)

plt.plot(t, C_A, 'o', label='Experimental data')
plt.plot(t_fit, ca_fit , '-', label='Polynomial fit')
plt.xlabel('time (min)')

plt.ylabel('Concentration')

plt.title('Raw data')

plt.legend()
plt.grid(True)
plt.x1im(0,300)

plt.show()
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# calculate the derivative of the polynomial

dca_dt = np.polyder(polynomial)

1n_ca = np.log(C_A)

1n_dca_dt = np.log(-dca_dt(t))

# fit line

res = linregress(ln_ca, ln_dca_dt)

line = res.slope * 1ln_ca + res.intercept

plt.plot(ln_ca, 1n_dca_dt, 'o', label='Differential analysis')
plt.plot(ln_ca, line, '-', label='fitted line')

plt.annotate(f'Slope = {res.slope:.2e}\nIntercept = {res.intercept:.2f}\n$R"

plt
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plt.
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In(

.xlabel('$\1n C_A$')

xy=(0.5, 0.15), xycoords='axes fraction', fontsize=12)

ylabel ('$\1ln(\\frac{-dC_A}dt}H$")

legend ()
grid(True)

show ()
ck the closest round order
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Reaction order is = 2, and k is 0.292 (dm? /mol)? /min.
Rate law is —7 4, =0.292 C3Cp

Integral analysis

Use the integral method to confirm that the reaction is second order with regard to triphenyl methyl
chloride



@ solution

import numpy as np
from scipy.stats import linregress
import matplotlib.pyplot as plt

# Data
CBO = 0.5 # mol/dm~3

t = np.array([0, 50, 100, 150, 200, 250, 300])
C_A = np.array([0.05, 0.038, 0.0306, 0.0256, 0.0222, 0.0195, 0.0174])

C_A0 = C_A[0]

1In_ca0_by_ca = np.log(C_A0/C_A)
one_by ca = 1/C_A

# Plotting

# CAvs t

plt.plot(t, C_A, 'bo-')

plt.title('Oth order test: Concentration of A vs. Time')
plt.xlabel('Time (min)')

plt.ylabel('Concentration of A ($mol/dm~3$) ')

plt.x1im(0,300)
plt.show()

# 1In(C_AO/C_A) vs t

plt.plot(t, 1n_cal_by_ca, 'ro-')

plt.title('1st order test: $\1n(C_A0/C_A)$ vs. Time')
plt.xlabel('Time (min)')
plt.ylabel('$\1n(C_AO/C_A)$")

plt.x1im(0,300)
plt.show()

# 1/CAvs t

plt.plot(t, one_by_ca, 'go-')

plt.title('2nd order test: $1/C_A$ vs. Time')
plt.xlabel('Time (min)')

plt.ylabel('$1/C_A (dm~3/mol)$"')

plt.x1im(0,300)
plt.show()
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2nd order test: 1/C4 vs. Time

1/C4(dm3/mol)
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As the plot of 1/C 4 vs. t is linear, the reaction is second order with respect to A.

Use of Regression to Find the Rate-Law Parameters

Use polynomial regression to estimate rate equation. Assume the reaction order is not 1.

@ solution

For constant volume batch reactor,

dC, ) e
o T MO

and integrating with the initial condition when¢ = 0 and C'y = C4, for o # 1.0 gives us:
(1—a) (1—a)
CAO — C(A

l—«

t—l
=

We want to minimize s to give o and &’.




import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import minimize

# Data
CBO =0.5 # mol/dm~3

t = np.array([0, 50, 100, 150, 200, 250, 300])
C_A = np.array([0.05, 0.038, 0.0306, 0.0256, 0.0222, 0.0195, 0.0174])

C_A0 = C_A[0]

# Initial guesses of k and n

# here k is the clubbed constant k * C_BO
k=1
n=20

# Objective function to minimize: the difference between t (experimental) ang

def objective(params):
k, n = params

# Calculate t model

t _model = (1/k) * (C_AOx*(1-n) - C_A**x(1-n))/ (1-n)
ssr = np.sum((t - t_model)**2) # Sum of squared residuals
return ssr

# Minimize the objective function
result = minimize(objective, [k,n], bounds=[(le-4, 1le4), (0, 5)]1)

# Extract the results
k_opt, n_opt = result.x
success = result.success

# Check if the solution was successful
if not success:
print ("Optimization was not successful. Try different initial guesses or

# final evaluation
t_model = (1/k_opt) * (C_AO*x(1-n_opt) - C_A*xx(1-n_opt))/ (1-n_opt)

# plot the data

plt.plot(t, C_A, 'o', label='Experiment')
plt.plot(t_model, C_A, '-', label='model')
plt.xlabel('$t (min)$')

plt.ylabel('$C_A (mol/dm~3)$')

1 t (model

methods."

plt.legend()
plt.grid(True)
plt.xlim(min(t) ,max(t))

nlt . show() 10
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Initial guess for Reaction order is = 0.00, and k is 1.000e+00.
Optimized value of Reaction order is = 2.04, and k is 2.934e-01.

Method of initial rates

The dissolution of dolomite using hydrochloric acid:

4HCl 4 CaMg(CO0,), — Mg*" + Ca** +4Cl~ +2C0, + 2H,0

Concentration of HCl at various times was determined from atomic absorption spectrophotometer
measurements of the Ca’" and Mg?" ions (Table 2). Determine the rate constant and order of
reaction.

Table 2: HCL concentration

Crecio N) Initial reaction rate —r ¢ o (mol/cm?s x 107)
1 1.2

4 2.0

2 1.36

0.1 0.36

0.5 0.74

11



@ solution

The mole balance for constant V batch reactor at t = 0:

—dC
(%) = —(raci)o = kCer o
0

Taking log

In <M> =InkalnCye
dt 0

import numpy as np
from scipy.stats import linregress
import matplotlib.pyplot as plt

ca0 = np.array([1, 4, 2, 0.1, 0.5])
ra0 = np.array([1.2, 2.0, 1.36, 0.36, 0.74]) * le-7

1In_ca0 = np.log(ca0)
1n_ra0 = np.log(ra0)

# fit line
res = linregress(ln_caO, 1ln_ra0)
line = res.slope * 1n_ca0 + res.intercept

plt.plot(ln_ca0l, 1ln_ra0, 'o', label='initial rates analysis')
plt.plot(ln_ca0O, line, '-', label='fitted line')

plt.annotate(f'Slope = {res.slope:.2f}\nIntercept = {res.intercept:.2f}\n$R"
xy=(0.5, 0.15), xycoords='axes fraction', fontsize=12)

plt.xlabel('$\1n C_A$')
plt.ylabel('$\1n(-r_{AO})$"')

plt.legend ()
plt.grid(True)

plt.show()

order = res.slope
k = np.exp(res.intercept)

12
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Reaction order is = 0.46, and k is 1.058e-07.

Using a Differential Reactor to Obtain Catalytic Rate Data

The formation of methane from carbon monoxide and hydrogen using a nickel catalyst was studied
by Pursley. The reaction

.
3H, + CO — CH, + H,0

was carried out at 500 °F in a differential reactor where the effluent concentration of methane was
measured. The raw data is shown in Table 3

Table 3: Raw data

Cen,
Run P, (atm) Py, (atm) (mol/dm?) x 10%
1 1 1.0 1.73
2 1.8 1.0 4.40
3 4.08 1.0 10.0
4 1.0 0.1 1.65
5 1.0 0.5 2.47
6 1.0 4.0 1.75

The exit volumetric flow rate from a differential packed bed containing 10 g of catalyst was maintained
at 300 dm? /min for each run. The partial pressures of H, and CO were determined at the entrance

13



to the reactor, and the methane concentration was measured at the reactor exit. Determine the rate
law and rate law parameters.

@ solution

* Reaction temperature: 500°F (isothermal reaction)
 Weight of catalyst: AW=10g
« Exit volumetric flow rate v = 300 dm3 /min

The reaction-rate law is assumed to be the product of a function of the partial pressure of CO
and a function of the partial pressure of H,,

T/CH4 = f(CO) x g(H,)
For the first 3 experiments, Py_ is constant. We use this data to determine the dependence on
Peo.
For the experiments 1, 4, 5, 6, P, is constant. We use this data to determine the dependence
on Py

2
The rate in a differential reactor is given by

p

/A

, ., Fen,
—Tco =TcH, = AW

For constant H, partial pressure,

T/CH4 =k Pgo
Taking log
ln(r’OH4) =Ink’ +alnPqp

For constant C'O partial pressure,

T/CH4 = g(H,)

From the data:
Atlow H, partial pressures, where r,; increases as Py increases, the rate law may be of the
form

ron, o PR (3)

At high H, partial pressures,where r, , decreases as Py increases, the rate law may be of
the form

1
/
H2
Combining Equation 3, and Equation 4 we can write
P
T 4Pl
2

14



And the overall rate equation becomes:

/ _
YcH, =

We can use regression to calculate estimate (3, 35, and constants a, and b.

alPeol’ 5{12

1+ bPp

15
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import numpy as np

from numpy.lib import recfunctions as rfn
from scipy.stats import linregress

import matplotlib.pyplot as plt

Temperature = 500 # deg. F
DeltaW = 10 # g
V.0 =300 # dm~3/min

dtype = [('Run', int), ('P_CO', float), ('P_H2', float), ('C_CH4', float)]
data = np.array([
(1, 1.0, 1.0, 1.73e-4),

(2, 1.8, 1.0, 4.40e-4),
(3, 4.08, 1.0, 10.0e-4),
(4, 1.0, 0.1, 1.65e-4),
(6, 1.0, 0.5, 2.47e-4),
(6, 1.0, 4.0, 1.75e-4)

1, dtype=dtype)

data["P_C0"]
data["P_H2"]
data["C_CH4"]

pco
ph2
cchd

rate = V_0 * cch4 / DeltaW

data = rfn.append fields(data, 'Rate', rate, usemask=False)

# Use first three points to estimate alpha

pco_a = pcol[:3]
rate_a = ratel[:3]

1n pco_a = np.log(pco_a)
1n_rate_a= np.log(rate_a)

# fit line
res = linregress(ln_pco_a, ln_rate_a)
line = res.slope * 1ln_pco_a + res.intercept

alpha = res.slope

plt.loglog(pco_a, rate_a, 'bo', label='Experimental Rate') # Original data (¢
plt.loglog(pco_a, np.exp(line), 'r-', label='Fitted Line') # Convert the log

plt.xlabel('$P_{C0}$"')
plt.ylabel('$r\'_{CH_4}$')

plt.title('Log-Log Plot of Rate vs $P_{CO}$')
plt.legend()

plt.grid(True)

n log-log
r of the f

D

plt.x1im(0.1, 10)

plt.annotate(f'Order = {alpha:.2f}', xy=(0.05, 0.8), xycoords='axes fraction', fontsiz

nlt . show() 16



Log-Log Plot of Rate vs Pco
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Reaction order with respect to CO is @ = 1.23.
Had we included more points, we would have found that the reaction is essentially first order.
We now use data from all the runs to estimate other parameters of the rate expression

8
aPpo Py

rog, = — a2 (7)
1 Py
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import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import least_squares

# Objective function to minimize: the difference between rate (experimental)
def objective(params, *args):

a, b, beta_1, beta_2 = params
pco, ph2,rate_obs = args

# calculate rate
rate_c = (a * pco * ph2*xbeta_1)/ (1 + b * ph2+**beta_2)

return rate obs - rate c

# Initial guesses

a=1
b=1
beta 1 =1
beta 2 = 1

guess = np.array([a,b,beta_1,beta_2])

bounds = (
[1e-3, 1e-3, 0, 0], # lower bound
[1e3, 1e3, 3, 3] # upper bound
)

args = (pco, ph2, rate)

# Minimize the objective function
result = least_squares(objective, guess, args=args, bounds=bounds)

Extract the results
Results from Fogler be
a_opt = 0.0252715
b_opt = 2.4872569
beta_1 opt 0.616542
beta_2 opt 1.0262047

H HF HF HF HF H

a_opt, b_opt, beta_1 opt, beta_2 opt = result.x
rate_c = (a_opt * pco * ph2+*beta_1 opt)/ (1 + b_opt * ph2**beta_2 opt)

# plot the data
plt.plot(data["Run"], rate, 'o', label='Experimental rate')
plt.plot(data["Run"], rate_c, 'x', label='Fitted rate')

plt.annotate(
f'a= {a_opt:.4fF\n'\
f'b = {b_opt:.4fX\n'\
f'$\\beta_1$ = {beta_1 opt:.2f}\n'\
f'$\\beta_2$ = {beta_2_opt:.2f}',
xy=(0.7, 0.5),
xycoords='axes fraction',
fontsize=12

18
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The final constants are:

a=0.0246

b=2.3981

By =0.61

By =1.02

If we assume hydrogen undergoes dissociative adsorption on the catalyst surface, we would
expect a dependence on the partial pressure of hydrogen to be to the 1/2 power. Because 0.61
is close to 0.5, we are going to regress the data again, setting 8, = 1/2 and 3, = 1.0.
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# Objective function to minimize: the difference between rate (experimental)

def objective2(params, *args):

a, b = params
pco, ph2,rate_obs = args

# calculate rate
rate_c = (a * pco * ph2*x0.5)/ (1 + b * ph2)
return rate obs - rate c

# Initial guesses
=1
b=1

)

guess = np.array([a,b])

bounds = (
[1e-3, 1e-3], # lower bound
[1e3, 1le3] # upper bound

)
args = (pco, ph2, rate)

# Minimize the objective function

result = least_squares(objective2, guess, args=args, bounds=bounds)

# Extract the results

# Results from Fogler 5e
# a_opt = 0.018

# b_opt = 1.49

a_opt, b_opt = result.x

rate_c = (a_opt * pco * ph2*x0.5)/ (1 + b_opt * ph2)

pco*ph2**0.5/rate
pco*ph2*x0.5/rate_c

lin_e
lin _c

# plot the data

plt.plot(ph2, lin e, 'o', label='Experimental rate')

plt.plot(ph2, lin c, '-', label='Fitted rate')

plt.annotate(
f'a= {a_opt:.4fF\n'\
f'b = {b_opt:.4f}',
xy=(0.7, 0.5),
xycoords="'axes fraction',
fontsize=12

plt.xlabel('$P_{H_2}$ (atm)')

plt.ylabel (' $\\frac{P_{CO0} P_{H_2}"0.5}{r\'_{CH_4}}$")

plt.legend()

plt.show() 2

and rate
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The final constants are:
a=0.0180
b =1.4880
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