In class activity: Mole balances

Lecture notes for chemical reaction engineering

Ranjeet Utikar

2024-02-22

Problems

1. Chloral is being consumed at a rate of 10 moles per second per m³ when reacting with chlorobenzene to form DDT and water in the reaction described above. In symbol form, the reaction is written as

$$A + 2B \longrightarrow C + D$$

Write the rates of disappearance and formation (i.e., generation) for each species in this reaction.

- Rate of disappearance of A: $-r_A = 10 \ mol/m^3 \ s$
- Rate of disappearance of B: $-r_B=$ 2*10 = 20 mol/m^3 s Rate of formation of C: $r_C=$ 10 mol/m^3 s
- Rate of formation of D: $r_D = 10 \ mol/m^3 \ s$
- 2. A rocket engine, burns a stoichiometric mixture of fuel (liquid hydrogen) in oxidant (liquid oxygen). The combustion chamber is cylindrical, 75 cm long and 60 cm in diameter, and the combustion process produces 108 kg/s of exhaust gases. If combustion is complete, find the rate of reaction of hydrogen and of oxygen.

Figure 1: Rocket engine

🥊 Solution

V= 0.2121 m^3

Reactions occuring: ${\rm H_2}+\frac{1}{2}\,{\rm O_2}\longrightarrow {\rm H_2O}$ Molecular weights: ${\rm H_2}=2gm; {\rm O_2}=16gm; {\rm H_2O}=18gm$

• H₂O produced: 108/18 = 6 kmol/s

 H₂ used: 6 kmol/s O₂ used: 3 kmol/s

3. A human being (75 kg) consumes about 6000 kJ of food per day. Assume that I the food is all glucose and that the overall reaction is

$$\mathrm{C_6H_{12}O_6} + \mathrm{6\,O_2} \longrightarrow \mathrm{6\,CO_2} + \mathrm{6\,H_2O}, -\Delta H_r = 2816kJ/mol$$

Find man's metabolic rate (the rate of living, loving, and laughing) in terms of moles of oxygen used per m³ of person per second. Assume average density of a human being to be $1000kq/m^3$.

Solution

We want to find

$$-r_{O_2}''' = -\frac{1}{V_{person}}\frac{dN_{O_2}}{dt} \left[\frac{molO_2 used}{m^3 of \, person \, s}\right]$$

 $\rho_{person} = 1000 kg/m^3$

 $V_{person} = 75/1000 = 0.075m^3$

Each mole of glucose consumed uses 6 moles of oxygen and releases 2816 kJ of energy

$$\begin{split} \frac{dN_{O_2}}{dt} &= \left(\frac{6000\,kJ/day}{2816\,kJ/mol\,glucose} \frac{6mol\,O_2}{1mol\,glucose}\right) = 12.8 \frac{molO_2}{day} \\ &- r_{O_2}''' = \frac{1}{0.075} \frac{12.8}{24 \cdot 3600} = 0.002 \frac{mol\,O_2\,used}{m^3s} \end{split}$$

4. Consider the liquid phase cis – trans isomerization of 2-butene which we will write symbolically as

$$cis-\mathsf{CH_3HC}{=}\mathsf{CHCH_3} \to trans-\mathsf{CH_3HC}{=}\mathsf{CHCH_3}$$

The reaction is first order in A $(-r_A = kC_A)$ and is carried out in a tubular reactor in which the volumetric flow rate, v, is constant, i.e., $v = v_0$.

- 1. Sketch the concentration profile.
- 2. Derive an equation relating the reactor volume to the entering and exiting concentrations of A, the rate constant k, and the volumetric flow rate.
- 3. Determine the reactor volume, V_1 , necessary to reduce the exiting concentration to 10% of the entering concentration, i.e., $C_A = 0.1 C_{A0}$, when the volumetric flow rate is $10dm^3/min$ (i.e., liters/min) and the specific reaction rate, k, is 0.231/min.

2

Solution

Concentration Profile

Figure 2: PFR concentration profile schematic

Rate equation: $-r_A=kC_A$ PFR mole balance:

$$\begin{split} \frac{dFA}{dV} &= \frac{dC_A v_0}{dV} = r_A = -kC_A \\ &\frac{v_0}{k} \int_{C_{A_0}}^{C_A} \frac{dC_A}{C_A} = \int_0^V dV \\ &\frac{v_0}{k} \ln \frac{C_{A_0}}{C_A} = V \end{split}$$

```
import math
```

Data given

```
# 1/min
k = 0.23
Ca0_by_Ca = 1/0.1
upsilon_0 = 10 # dm^3/min
```

V = (upsilon_0/k)* math.log(Ca0_by_Ca)

V= 100.11 m^3