In class activity: Mole balances

Lecture notes for chemical reaction engineering

Ranjeet Utikar

2024-02-22

Problems

1. Chloral is being consumed at a rate of 10 moles per second per m^{3} when reacting with chlorobenzene to form DDT and water in the reaction described above. In symbol form, the reaction is written as

$$
\mathrm{A}+2 \mathrm{~B} \longrightarrow \mathrm{C}+\mathrm{D}
$$

Write the rates of disappearance and formation (i.e., generation) for each species in this reaction.

Solution

- Rate of disappearance of A: $-r_{A}=10 \mathrm{~mol} / \mathrm{m}^{3} \mathrm{~s}$
- Rate of disappearance of $\mathrm{B}:-r_{B}=2^{*} 10=20 \mathrm{~mol} / \mathrm{m}^{3} \mathrm{~s}$
- Rate of formation of C: $r_{C}=10 \mathrm{~mol} / \mathrm{m}^{3} \mathrm{~s}$
- Rate of formation of D: $r_{D}=10 \mathrm{~mol} / \mathrm{m}^{3} \mathrm{~s}$

2. A rocket engine, burns a stoichiometric mixture of fuel (liquid hydrogen) in oxidant (liquid oxygen). The combustion chamber is cylindrical, 75 cm long and 60 cm in diameter, and the combustion process produces $108 \mathrm{~kg} / \mathrm{s}$ of exhaust gases. If combustion is complete, find the rate of reaction of hydrogen and of oxygen.

Figure 1: Rocket engine

Solution

$V=0.2121 \mathrm{~m}^{3}$
Reactions occuring: $\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O}$
Molecular weights: $\mathrm{H}_{2}=2 \mathrm{gm} ; \mathrm{O}_{2}=16 \mathrm{gm} ; \mathrm{H}_{2} \mathrm{O}=18 \mathrm{gm}$

- $\mathrm{H}_{2} \mathrm{O}$ produced: $108 / 18=6 \mathrm{kmol} / \mathrm{s}$
- H_{2} used: $6 \mathrm{kmol} / \mathrm{s}$
- O_{2} used: $3 \mathrm{kmol} / \mathrm{s}$

3. A human being (75 kg) consumes about 6000 kJ of food per day. Assume that I the food is all glucose and that the overall reaction is

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O},-\Delta H_{r}=2816 \mathrm{~kJ} / \mathrm{mol}
$$

Find man's metabolic rate (the rate of living, loving, and laughing) in terms of moles of oxygen used per m^{3} of person per second. Assume average density of a human being to be $1000 \mathrm{~kg} / \mathrm{m}^{3}$.

Solution

We want to find

$$
-r_{O_{2}}^{\prime \prime \prime}=-\frac{1}{V_{\text {person }}} \frac{d N_{O_{2}}}{d t}\left[\frac{\mathrm{molO}_{2} \text { used }}{m^{3} \text { of person } s}\right]
$$

$\rho_{\text {person }}=1000 \mathrm{~kg} / \mathrm{m}^{3}$
$V_{\text {person }}=75 / 1000=0.075 \mathrm{~m}^{3}$
Each mole of glucose consumed uses 6 moles of oxygen and releases 2816 kJ of energy

$$
\begin{aligned}
& \frac{d N_{\mathrm{O}_{2}}}{d t}=\left(\frac{6000 \mathrm{~kJ} / \text { day }}{2816 \mathrm{~kJ} / \mathrm{mol} \mathrm{glucose}} \frac{6 \mathrm{~mol} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{glucose}}\right)=12.8 \frac{\mathrm{molO}_{2}}{d a y} \\
&-r_{O_{2}}^{\prime \prime \prime}=\frac{1}{0.075} \frac{12.8}{24 \cdot 3600}=0.002 \frac{\mathrm{~mol} \mathrm{O}}{\mathrm{O}_{2} \text { used }} \\
& \mathrm{m}^{3} \mathrm{~s}
\end{aligned}
$$

4. Consider the liquid phase cis - trans isomerization of 2-butene which we will write symbolically as

$$
\text { cis }-\mathrm{CH}_{3} \mathrm{HC}=\mathrm{CHCH}_{3} \rightarrow \text { trans }-\mathrm{CH}_{3} \mathrm{HC}=\mathrm{CHCH}_{3}
$$

The reaction is first order in $\mathrm{A}\left(-r_{A}=k C_{A}\right)$ and is carried out in a tubular reactor in which the volumetric flow rate, v, is constant, i.e., $v=v_{0}$.

1. Sketch the concentration profile.
2. Derive an equation relating the reactor volume to the entering and exiting concentrations of A , the rate constant k , and the volumetric flow rate.
3. Determine the reactor volume, V_{1}, necessary to reduce the exiting concentration to 10% of the entering concentration, i.e., $C_{A}=0.1 C_{A 0}$, when the volumetric flow rate is $10 \mathrm{dm} \mathrm{m}^{3} / \mathrm{min}$ (i.e., liters $/ \mathrm{min}$) and the specific reaction rate, k , is $0.231 / \mathrm{min}$.

Solution

Concentration Profile

Figure 2: PFR concentration profile schematic

Rate equation: $-r_{A}=k C_{A}$
PFR mole balance:

$$
\begin{gathered}
\frac{d F A}{d V}=\frac{d C_{A} v_{0}}{d V}=r_{A}=-k C_{A} \\
\frac{v_{0}}{k} \int_{C_{A_{0}}}^{C_{A}} \frac{d C_{A}}{C_{A}}=\int_{0}^{V} d V \\
\frac{v_{0}}{k} \ln \frac{C_{A_{0}}}{C_{A}}=V
\end{gathered}
$$

import math
\# Data given
$\mathrm{k}=0.23 \quad \#$ 1/min
Ca0_by_Ca = 1/ 0.1
upsilon_0 = $10 \quad \#$ dm^3/min
$\mathrm{V}=($ upsilon_0/k)$*$ math. $\log (\mathrm{CaO}$ _by_Ca)
$V=100.11 \mathrm{~m}^{3}$

